-
-
Notifications
You must be signed in to change notification settings - Fork 3.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The test correct_transforms_when_no_children
spuriously fails.
#5285
Labels
A-Build-System
Related to build systems or continuous integration
C-Bug
An unexpected or incorrect behavior
Comments
tim-blackbird
added
C-Bug
An unexpected or incorrect behavior
S-Needs-Triage
This issue needs to be labelled
labels
Jul 11, 2022
alice-i-cecile
added
A-Build-System
Related to build systems or continuous integration
and removed
S-Needs-Triage
This issue needs to be labelled
labels
Jul 11, 2022
Looks like the same problem as #5054. |
issue is test |
This was referenced Oct 5, 2022
xgbwei
pushed a commit
to xgbwei/bevy
that referenced
this issue
Oct 5, 2022
…ne#6172) # Objective - Fix bevyengine#5285 ## Solution - Put the panicking system in a single threaded stage during the test - This way only the main thread will panic, which is handled by `cargo test`
james7132
pushed a commit
to james7132/bevy
that referenced
this issue
Oct 19, 2022
…ne#6172) # Objective - Fix bevyengine#5285 ## Solution - Put the panicking system in a single threaded stage during the test - This way only the main thread will panic, which is handled by `cargo test`
james7132
pushed a commit
to james7132/bevy
that referenced
this issue
Oct 28, 2022
…ne#6172) # Objective - Fix bevyengine#5285 ## Solution - Put the panicking system in a single threaded stage during the test - This way only the main thread will panic, which is handled by `cargo test`
bors bot
pushed a commit
that referenced
this issue
Nov 2, 2022
# Objective Right now, the `TaskPool` implementation allows panics to permanently kill worker threads upon panicking. This is currently non-recoverable without using a `std::panic::catch_unwind` in every scheduled task. This is poor ergonomics and even poorer developer experience. This is exacerbated by #2250 as these threads are global and cannot be replaced after initialization. Removes the need for temporary fixes like #4998. Fixes #4996. Fixes #6081. Fixes #5285. Fixes #5054. Supersedes #2307. ## Solution The current solution is to wrap `Executor::run` in `TaskPool` with a `catch_unwind`, and discarding the potential panic. This was taken straight from [smol](https://github.com/smol-rs/smol/blob/404c7bcc0aea59b82d7347058043b8de7133241c/src/spawn.rs#L44)'s current implementation. ~~However, this is not entirely ideal as:~~ - ~~the signaled to the awaiting task. We would need to change `Task<T>` to use `async_task::FallibleTask` internally, and even then it doesn't signal *why* it panicked, just that it did.~~ (See below). - ~~no error is logged of any kind~~ (See below) - ~~it's unclear if it drops other tasks in the executor~~ (it does not) - ~~This allows the ECS parallel executor to keep chugging even though a system's task has been dropped. This inevitably leads to deadlock in the executor.~~ Assuming we don't catch the unwind in ParallelExecutor, this will naturally kill the main thread. ### Alternatives A final solution likely will incorporate elements of any or all of the following. #### ~~Log and Ignore~~ ~~Log the panic, drop the task, keep chugging. This only addresses the discoverability of the panic. The process will continue to run, probably deadlocking the executor. tokio's detatched tasks operate in this fashion.~~ Panics already do this by default, even when caught by `catch_unwind`. #### ~~`catch_unwind` in `ParallelExecutor`~~ ~~Add another layer catching system-level panics into the `ParallelExecutor`. How the executor continues when a core dependency of many systems fails to run is up for debate.~~ `async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread. #### ~~Emulate/Copy `tokio::JoinHandle` with `Task<T>`~~ ~~`tokio::JoinHandle<T>` bubbles up the panic from the underlying task when awaited. This can be transitively applied across other APIs that also use `Task<T>` like `Query::par_for_each` and `TaskPool::scope`, bubbling up the panic until it's either caught or it reaches the main thread.~~ `async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread. #### Abort on Panic The nuclear option. Log the error, abort the entire process on any thread in the task pool panicking. Definitely avoids any additional infrastructure for passing the panic around, and might actually lead to more efficient code as any unwinding is optimized out. However gives the developer zero options for dealing with the issue, a seemingly poor choice for debuggability, and prevents graceful shutdown of the process. Potentially an option for handling very low-level task management (a la #4740). Roughly takes the shape of: ```rust struct AbortOnPanic; impl Drop for AbortOnPanic { fn drop(&mut self) { abort!(); } } let guard = AbortOnPanic; // Run task std::mem::forget(AbortOnPanic); ``` --- ## Changelog Changed: `bevy_tasks::TaskPool`'s threads will no longer terminate permanently when a task scheduled onto them panics. Changed: `bevy_tasks::Task` and`bevy_tasks::Scope` will propagate panics in the spawned tasks/scopes to the parent thread.
ItsDoot
pushed a commit
to ItsDoot/bevy
that referenced
this issue
Feb 1, 2023
…ne#6172) # Objective - Fix bevyengine#5285 ## Solution - Put the panicking system in a single threaded stage during the test - This way only the main thread will panic, which is handled by `cargo test`
ItsDoot
pushed a commit
to ItsDoot/bevy
that referenced
this issue
Feb 1, 2023
# Objective Right now, the `TaskPool` implementation allows panics to permanently kill worker threads upon panicking. This is currently non-recoverable without using a `std::panic::catch_unwind` in every scheduled task. This is poor ergonomics and even poorer developer experience. This is exacerbated by bevyengine#2250 as these threads are global and cannot be replaced after initialization. Removes the need for temporary fixes like bevyengine#4998. Fixes bevyengine#4996. Fixes bevyengine#6081. Fixes bevyengine#5285. Fixes bevyengine#5054. Supersedes bevyengine#2307. ## Solution The current solution is to wrap `Executor::run` in `TaskPool` with a `catch_unwind`, and discarding the potential panic. This was taken straight from [smol](https://github.com/smol-rs/smol/blob/404c7bcc0aea59b82d7347058043b8de7133241c/src/spawn.rs#L44)'s current implementation. ~~However, this is not entirely ideal as:~~ - ~~the signaled to the awaiting task. We would need to change `Task<T>` to use `async_task::FallibleTask` internally, and even then it doesn't signal *why* it panicked, just that it did.~~ (See below). - ~~no error is logged of any kind~~ (See below) - ~~it's unclear if it drops other tasks in the executor~~ (it does not) - ~~This allows the ECS parallel executor to keep chugging even though a system's task has been dropped. This inevitably leads to deadlock in the executor.~~ Assuming we don't catch the unwind in ParallelExecutor, this will naturally kill the main thread. ### Alternatives A final solution likely will incorporate elements of any or all of the following. #### ~~Log and Ignore~~ ~~Log the panic, drop the task, keep chugging. This only addresses the discoverability of the panic. The process will continue to run, probably deadlocking the executor. tokio's detatched tasks operate in this fashion.~~ Panics already do this by default, even when caught by `catch_unwind`. #### ~~`catch_unwind` in `ParallelExecutor`~~ ~~Add another layer catching system-level panics into the `ParallelExecutor`. How the executor continues when a core dependency of many systems fails to run is up for debate.~~ `async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread. #### ~~Emulate/Copy `tokio::JoinHandle` with `Task<T>`~~ ~~`tokio::JoinHandle<T>` bubbles up the panic from the underlying task when awaited. This can be transitively applied across other APIs that also use `Task<T>` like `Query::par_for_each` and `TaskPool::scope`, bubbling up the panic until it's either caught or it reaches the main thread.~~ `async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread. #### Abort on Panic The nuclear option. Log the error, abort the entire process on any thread in the task pool panicking. Definitely avoids any additional infrastructure for passing the panic around, and might actually lead to more efficient code as any unwinding is optimized out. However gives the developer zero options for dealing with the issue, a seemingly poor choice for debuggability, and prevents graceful shutdown of the process. Potentially an option for handling very low-level task management (a la bevyengine#4740). Roughly takes the shape of: ```rust struct AbortOnPanic; impl Drop for AbortOnPanic { fn drop(&mut self) { abort!(); } } let guard = AbortOnPanic; // Run task std::mem::forget(AbortOnPanic); ``` --- ## Changelog Changed: `bevy_tasks::TaskPool`'s threads will no longer terminate permanently when a task scheduled onto them panics. Changed: `bevy_tasks::Task` and`bevy_tasks::Scope` will propagate panics in the spawned tasks/scopes to the parent thread.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
A-Build-System
Related to build systems or continuous integration
C-Bug
An unexpected or incorrect behavior
Presumably since #4197
The text was updated successfully, but these errors were encountered: