Releases: Lightning-AI/pytorch-lightning
Lightning v2.5 post0
Full Changelog: 2.5.0...2.5.0.post0
Lightning v2.5
Lightning AI ⚡ is excited to announce the release of Lightning 2.5.
Lightning 2.5 comes with improvements on several fronts, with zero API changes. Our users love it stable, we keep it stable 😄.
Talking about love ❤️, the lightning
, pytorch-lightning
and lightning-fabric
packages are collectively getting more than 10M downloads per month 😮, for a total of over 180M downloads 🤯 since the early days . It's incredible to see PyTorch Lightning getting such a strong adoption across the industry and the sciences.
Release 2.5 embraces PyTorch 2.5, and it marks some of its more recent directions as officially supported, namely tensor subclass-based APIs like Distributed Tensors and TorchAO, in combination with torch.compile
.
Here's a couple of examples:
Distributed FP8 transformer with PyTorch Lightning
Full example here
import lightning as L
import torch
import torch.nn as nn
import torch.nn.functional as F
from lightning.pytorch.demos import Transformer, WikiText2
from lightning.pytorch.strategies import ModelParallelStrategy
from torch.distributed._composable.fsdp.fully_shard import fully_shard
from torch.utils.data import DataLoader
from torchao.float8 import Float8LinearConfig, convert_to_float8_training
class LanguageModel(L.LightningModule):
def __init__(self, vocab_size):
super().__init__()
self.vocab_size = vocab_size
self.model = None
def configure_model(self):
if self.model is not None:
return
with torch.device("meta"):
model = Transformer(
vocab_size=self.vocab_size,
nlayers=16,
nhid=4096,
ninp=1024,
nhead=32,
)
float8_config = Float8LinearConfig(
# pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly # noqa
pad_inner_dim=True,
)
def module_filter_fn(mod: torch.nn.Module, fqn: str):
# we skip the decoder because it typically vocabulary size
# is not divisible by 16 as required by float8
return fqn != "decoder"
convert_to_float8_training(model, config=float8_config, module_filter_fn=module_filter_fn)
for module in model.modules():
if isinstance(module, (nn.TransformerEncoderLayer, nn.TransformerDecoderLayer)):
fully_shard(module, mesh=self.device_mesh)
fully_shard(model, mesh=self.device_mesh)
self.model = torch.compile(model)
def training_step(self, batch):
input, target = batch
output = self.model(input, target)
loss = F.nll_loss(output, target.view(-1))
self.log("train_loss", loss, prog_bar=True)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=1e-4)
def train():
L.seed_everything(42)
dataset = WikiText2()
train_dataloader = DataLoader(dataset, num_workers=8, batch_size=1)
model = LanguageModel(vocab_size=dataset.vocab_size)
mp_strategy = ModelParallelStrategy(
data_parallel_size=4,
tensor_parallel_size=1,
)
trainer = L.Trainer(strategy=mp_strategy, max_steps=100, precision="bf16-true", accumulate_grad_batches=8)
trainer.fit(model, train_dataloader)
trainer.print(torch.cuda.memory_summary())
if __name__ == "__main__":
torch.set_float32_matmul_precision("high")
train()
Distributed FP8 transformer with Fabric
Full example here
import lightning as L
import torch
import torch.nn as nn
import torch.nn.functional as F
from lightning.fabric.strategies import ModelParallelStrategy
from lightning.pytorch.demos import Transformer, WikiText2
from torch.distributed._composable.fsdp.fully_shard import fully_shard
from torch.distributed.device_mesh import DeviceMesh
from torch.utils.data import DataLoader
from torchao.float8 import Float8LinearConfig, convert_to_float8_training
from tqdm import tqdm
def configure_model(model: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
float8_config = Float8LinearConfig(
# pip install -U --index-url <https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/> triton-nightly # noqa
pad_inner_dim=True,
)
def module_filter_fn(mod: torch.nn.Module, fqn: str):
# we skip the decoder because it typically vocabulary size
# is not divisible by 16 as required by float8
return fqn != "decoder"
convert_to_float8_training(model, config=float8_config, module_filter_fn=module_filter_fn)
for module in model.modules():
if isinstance(module, (torch.nn.TransformerEncoderLayer, torch.nn.TransformerDecoderLayer)):
fully_shard(module, mesh=device_mesh)
fully_shard(model, mesh=device_mesh)
return torch.compile(model)
def train():
L.seed_everything(42)
batch_size = 8
micro_batch_size = 1
max_steps = 100
dataset = WikiText2()
dataloader = DataLoader(dataset, num_workers=8, batch_size=micro_batch_size)
with torch.device("meta"):
model = Transformer(
vocab_size=dataset.vocab_size,
nlayers=16,
nhid=4096,
ninp=1024,
nhead=32,
)
strategy = ModelParallelStrategy(data_parallel_size=4, tensor_parallel_size=1, parallelize_fn=configure_model)
fabric = L.Fabric(precision="bf16-true", strategy=strategy)
fabric.launch()
model = fabric.setup(model)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
optimizer = fabric.setup_optimizers(optimizer)
dataloader = fabric.setup_dataloaders(dataloader)
iterable = tqdm(enumerate(dataloader), total=len(dataloader)) if fabric.is_global_zero else enumerate(dataloader)
steps = 0
for i, batch in iterable:
input, target = batch
is_accumulating = i % (batch_size // micro_batch_size) != 0
with fabric.no_backward_sync(model, enabled=is_accumulating):
output = model(input, target)
loss = F.nll_loss(output, target.view(-1))
fabric.backward(loss)
if not is_accumulating:
fabric.clip_gradients(model, optimizer, max_norm=1.0)
optimizer.step()
optimizer.zero_grad()
steps += 1
if fabric.is_global_zero:
iterable.set_postfix_str(f"train_loss={loss.item():.2f}")
if steps == max_steps:
break
fabric.print(torch.cuda.memory_summary())
if __name__ == "__main__":
torch.set_float32_matmul_precision("high")
train()
As these examples show, it's now easier than ever to take your PyTorch Lightning module and run it with FSDP2 and/or tensor parallelism in FP8 precision, using the ModelParallelStrategy
we introduced in 2.4.
Also note the use of distributed tensor APIs, TorchAO APIs, and torch.compile
directly in the configure_model
hook (or in the parallelize function in Fabric's ModelParallelStrategy
), as opposed to the LightningModule
as a whole. The advantage with this approach is that you can just copy-paste the parallelize functions that come with native PyTorch models directly in configure_model
and get the same effect, no head-scratching involved 🤓.
Talking about head scratching, we also made a pass at the PyTorch Lightning internals and hardened the parts where we keep track of progress counters during training, validation, testing, as well as learning rate scheduling, in relation to resuming from checkpoints. We now made sure there are no (to the best of our knowledge) edge cases where stopping and resuming from checkpoints can change the sequence of loops or other internal states. Fault tolerance for the win 🥳!
Alright! Feel free to take a look at the full changelog below.
And of course: the best way to use PyTorch Lightning and Fabric is through Lightning Studio ⚡. Access GPUs, train models, deploy and more with zero setup. Focus on data and models - not infrastructure.
Changes
PyTorch Lightning
Added
- Added
step
parameter toTensorBoardLogger.log_hyperparams
to visualize changes during training (#20176) - Added
str
method to datamodule (#20301) - Added timeout to DeepSpeedStrategy (#20474)
- Added doc for Truncated Back-Propagation Through Time (#20422)
- Added FP8 + FSDP2 + torch.compile examples for PyTorch Lightning (#20440)
- Added profiling to
Trainer.save_checkpoint
(#20405) - Added after_instantiate_classes hook to CLI (#20401)
<details...
Lightning 2.5 RC
2.5.0rc0 Bump to 2.5.0rc0 (#20493)
Lightning v2.4
Lightning AI ⚡ is excited to announce the release of Lightning 2.4. This is mainly a compatibility upgrade for PyTorch 2.4 and Python 3.12, with a sprinkle of a few features and bug fixes.
Did you know? The Lightning philosophy extends beyond a boilerplate-free deep learning framework: We've been hard at work bringing you Lightning Studio. Code together, prototype, train, deploy, host AI web apps. All from your browser, with zero setup.
Changes
PyTorch Lightning
Added
- Made saving non-distributed checkpoints fully atomic (#20011)
- Added
dump_stats
flag toAdvancedProfiler
(#19703) - Added a flag
verbose
to theseed_everything()
function (#20108) - Added support for PyTorch 2.4 (#20010)
- Added support for Python 3.12 (20078)
- The
TQDMProgressBar
now provides an option to retain prior training epoch bars (#19578) - Added the count of modules in train and eval mode to the printed
ModelSummary
table (#20159)
Changed
- Triggering KeyboardInterrupt (Ctrl+C) during
.fit()
,.evaluate()
,.test()
or.predict()
now terminates all processes launched by the Trainer and exits the program (#19976) - Changed the implementation of how seeds are chosen for dataloader workers when using
seed_everything(..., workers=True)
(#20055) - NumPy is no longer a required dependency (#20090)
Fixed
- Avoid LightningCLI saving hyperparameters with
class_path
andinit_args
since this would be a breaking change (#20068) - Fixed an issue that would cause too many printouts of the seed info when using
seed_everything()
(#20108) - Fixed
_LoggerConnector
's_ResultMetric
to move all registered keys to the device of the logged value if needed (#19814) - Fixed
_optimizer_to_device
logic for special 'step' key in optimizer state causing performance regression (#20019) - Fixed parameter counts in
ModelSummary
when model has distributed parameters (DTensor) (#20163)
Lightning Fabric
Added
Changed
Fixed
Full commit list: 2.3.0 -> 2.4.0
Contributors
We thank all our contributors who submitted pull requests for features, bug fixes and documentation updates.
New Contributors
- @SamuelLarkin made their first contribution in #19969
- @liambsmith made their first contribution in #19986
- @EtayLivne made their first contribution in #19915
- @elmuz made their first contribution in #19998
- @swyo made their first contribution in #19982
- @corwinjoy made their first contribution in #20011
- @omahs made their first contribution in #19979
- @linbo0518 made their first contribution in #20040
- @01AbhiSingh made their first contribution in #20055
- @K-H-Ismail made their first contribution in #20099
- @adosar made their first contribution in #20146
- @jojje made their first contribution in #19578
Did you know?
Chuck Norris can solve NP-hard problems in polynomial time. In fact, any problem is easy when Chuck Norris solves it.
Patch release v2.3.3
This release removes the code from the main lightning
package that was reported in CVE-2024-5980.
Patch release v2.3.2
Includes a minor bugfix that avoids a conflict with the entrypoint command with another package #20041.
Patch release v2.3.1
Includes minor bugfixes and stability improvements.
Full Changelog: 2.3.0...2.3.1
Lightning v2.3: Tensor Parallelism and 2D Parallelism
Lightning AI is excited to announce the release of Lightning 2.3 ⚡
Did you know? The Lightning philosophy extends beyond a boilerplate-free deep learning framework: We've been hard at work bringing you Lightning Studio. Code together, prototype, train, deploy, host AI web apps. All from your browser, with zero setup.
This release introduces experimental support for Tensor Parallelism and 2D Parallelism, PyTorch 2.3 support, and several bugfixes and stability improvements.
Highlights
Tensor Parallelism (beta)
Tensor parallelism (TP) is a technique that splits up the computation of selected layers across GPUs to save memory and speed up distributed models. To enable TP as well as other forms of parallelism, we introduce a ModelParallelStrategy
for both Lightning Trainer and Fabric. Under the hood, TP is enabled through new experimental PyTorch APIs like DTensor and torch.distributed.tensor.parallel
.
PyTorch Lightning
Enabling TP in a model with PyTorch Lightning requires you to implement the LightningModule.configure_model()
method where you convert selected layers of a model to paralellized layers. This is an advanced feature, because it requires a deep understanding of the model architecture. Open the tutorial Studio to learn the basics of Tensor Parallelism.
import lightning as L
from lightning.pytorch.strategies import ModelParallelStrategy
from torch.distributed.tensor.parallel import ColwiseParallel, RowwiseParallel
from torch.distributed.tensor.parallel import parallelize_module
# 1. Implement the `configure_model()` method in LightningModule
class LitModel(L.LightningModule):
def __init__(self):
super().__init__()
self.model = FeedForward(8192, 8192)
def configure_model(self):
# Lightning will set up a `self.device_mesh` for you
tp_mesh = self.device_mesh["tensor_parallel"]
# Use PyTorch's distributed tensor APIs to parallelize the model
plan = {
"w1": ColwiseParallel(),
"w2": RowwiseParallel(),
"w3": ColwiseParallel(),
}
parallelize_module(self.model, tp_mesh, plan)
def training_step(self, batch):
...
# 2. Create the strategy
strategy = ModelParallelStrategy()
# 3. Configure devices and set the strategy in Trainer
trainer = L.Trainer(accelerator="cuda", devices=2, strategy=strategy)
trainer.fit(...)
Full training example (requires at least 2 GPUs).
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.tensor.parallel import ColwiseParallel, RowwiseParallel
from torch.distributed.tensor.parallel import parallelize_module
import lightning as L
from lightning.pytorch.demos.boring_classes import RandomDataset
from lightning.pytorch.strategies import ModelParallelStrategy
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
def forward(self, x):
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class LitModel(L.LightningModule):
def __init__(self):
super().__init__()
self.model = FeedForward(8192, 8192)
def configure_model(self):
if self.device_mesh is None:
return
# Lightning will set up a `self.device_mesh` for you
tp_mesh = self.device_mesh["tensor_parallel"]
# Use PyTorch's distributed tensor APIs to parallelize the model
plan = {
"w1": ColwiseParallel(),
"w2": RowwiseParallel(),
"w3": ColwiseParallel(),
}
parallelize_module(self.model, tp_mesh, plan)
def training_step(self, batch):
output = self.model(batch)
loss = output.sum()
return loss
def configure_optimizers(self):
return torch.optim.AdamW(self.model.parameters(), lr=3e-3)
def train_dataloader(self):
# Trainer configures the sampler automatically for you such that
# all batches in a tensor-parallel group are identical
dataset = RandomDataset(8192, 64)
return torch.utils.data.DataLoader(dataset, batch_size=8, num_workers=2)
strategy = ModelParallelStrategy()
trainer = L.Trainer(
accelerator="cuda",
devices=2,
strategy=strategy,
max_epochs=1,
)
model = LitModel()
trainer.fit(model)
trainer.print(f"Peak memory usage: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB")
Lightning Fabric
Applying TP in a model with Fabric requires you to implement a special function where you convert selected layers of a model to paralellized layers. This is an advanced feature, because it requires a deep understanding of the model architecture. Open the tutorial Studio to learn the basics of Tensor Parallelism.
import lightning as L
from lightning.fabric.strategies import ModelParallelStrategy
from torch.distributed.tensor.parallel import ColwiseParallel, RowwiseParallel
from torch.distributed.tensor.parallel import parallelize_module
# 1. Implement the parallelization function for your model
def parallelize_feedforward(model, device_mesh):
# Lightning will set up a device mesh for you
tp_mesh = device_mesh["tensor_parallel"]
# Use PyTorch's distributed tensor APIs to parallelize the model
plan = {
"w1": ColwiseParallel(),
"w2": RowwiseParallel(),
"w3": ColwiseParallel(),
}
parallelize_module(model, tp_mesh, plan)
return model
# 2. Pass the parallelization function to the strategy
strategy = ModelParallelStrategy(parallelize_fn=parallelize_feedforward)
# 3. Configure devices and set the strategy in Fabric
fabric = L.Fabric(accelerator="cuda", devices=2, strategy=strategy)
fabric.launch()
Full training example (requires at least 2 GPUs).
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.tensor.parallel import ColwiseParallel, RowwiseParallel
from torch.distributed.tensor.parallel import parallelize_module
import lightning as L
from lightning.pytorch.demos.boring_classes import RandomDataset
from lightning.fabric.strategies import ModelParallelStrategy
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
def forward(self, x):
return self.w2(F.silu(self.w1(x)) * self.w3(x))
def parallelize_feedforward(model, device_mesh):
# Lightning will set up a device mesh for you
tp_mesh = device_mesh["tensor_parallel"]
# Use PyTorch's distributed tensor APIs to parallelize the model
plan = {
"w1": ColwiseParallel(),
"w2": RowwiseParallel(),
"w3": ColwiseParallel(),
}
parallelize_module(model, tp_mesh, plan)
return model
strategy = ModelParallelStrategy(parallelize_fn=parallelize_feedforward)
fabric = L.Fabric(accelerator="cuda", devices=2, strategy=strategy)
fabric.launch()
# Initialize the model
model = FeedForward(8192, 8192)
model = fabric.setup(model)
# Define the optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-3)
optimizer = fabric.setup_optimizers(optimizer)
# Define dataset/dataloader
dataset = RandomDataset(8192, 64)
dataloader = torch.utils.data.DataLoader(dataset, batch_si...
Patch release v2.2.5
PyTorch Lightning + Fabric
Fixed
- Fixed a matrix shape mismatch issue when running a model loaded from a quantized checkpoint (bitsandbytes) (#19886)
Full Changelog: 2.2.4...2.2.5
Patch release v2.2.4
App
Fixed
- Fixed HTTPClient retry for flow/work queue (#19837)
PyTorch
No Changes.
Fabric
No Changes.
Full Changelog: 2.2.3...2.2.4