Skip to content

Commit

Permalink
[CUTLASS] Refactor GEMM generator in preparation for conv2d (apache#9571
Browse files Browse the repository at this point in the history
)

* split non-gemm specific generator code to gen_tensor_op.py

commit 250f915
Author: Masahiro Masuda <masahi129@gmail.com>
Date:   Sun Nov 14 06:44:52 2021 +0900

    remove conv2d stuff

commit 1a6b27c
Author: Masahiro Masuda <masahi129@gmail.com>
Date:   Sun Nov 14 06:41:31 2021 +0900

    remove unused import

commit f7c3b5a
Author: Masahiro Masuda <masahi129@gmail.com>
Date:   Sun Nov 14 06:37:07 2021 +0900

    add profiler boilarplate for conv2d

commit ca1ae27
Author: Masahiro Masuda <masahi129@gmail.com>
Date:   Sun Nov 14 06:22:06 2021 +0900

    introduce gen_tensor_op.py

commit 37bb918
Author: Masahiro Masuda <masahi129@gmail.com>
Date:   Sun Nov 14 05:45:41 2021 +0900

    more conv2d code

commit 5c00398
Author: Masahiro Masuda <masahi129@gmail.com>
Date:   Sun Nov 14 05:13:30 2021 +0900

    Begin conv2d support

* fix

* use functools.partial

* remove unused import
  • Loading branch information
masahi authored and ylc committed Jan 7, 2022
1 parent f250d74 commit d8f1eb3
Show file tree
Hide file tree
Showing 3 changed files with 238 additions and 211 deletions.
230 changes: 20 additions & 210 deletions python/tvm/contrib/cutlass/gen_gemm.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,37 +15,29 @@
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name
"""Kernel generator and profiler for CUTLASS."""
import logging
import os
"""GEMM kernel generator and profiler for CUTLASS."""
from functools import partial
import re
import tempfile
import subprocess
import multiprocessing
from .gemm_operation import GemmOperation, EmitGemmInstance
from .gemm_profiler import GemmProfilerEmitter
from .gen_tensor_op import (
ProfilerEngine,
generate_sm75_tensor_op_1688,
generate_sm80_tensor_op_16816,
)
from .library import (
EpilogueFunctor,
SwizzlingFunctor,
TensorDescription,
DataTypeTag,
LayoutType,
MathInstruction,
DataType,
OpcodeClass,
MathOperation,
TileDescription,
)

logger = logging.getLogger("cutlass")


def create_gemm_operator(
layouts,
tile_descriptions,
data_type,
alignment_constraints,
epilogue_functor=EpilogueFunctor.LinearCombination,
swizzling_functor=SwizzlingFunctor.Identity8,
batched=False,
):
Expand All @@ -59,6 +51,10 @@ def create_gemm_operator(
if batched:
swizzling_functor = SwizzlingFunctor.Batched

layouts = [
(LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.RowMajor),
]

for layout in layouts:
for tile_description in tile_descriptions:
for alignment in alignment_constraints:
Expand All @@ -76,7 +72,7 @@ def create_gemm_operator(
B,
C,
element_epilogue,
epilogue_functor,
EpilogueFunctor.LinearCombination,
swizzling_functor,
)
op_bias = GemmOperation(
Expand Down Expand Up @@ -110,7 +106,6 @@ def create_gemm_operator(
swizzling_functor,
)

kernel_emitter = EmitGemmInstance()
op_entry["op"] = op
op_entry["name"] = op.procedural_name()
op_entry["opdef"] = kernel_emitter.emit(op, batched=batched)
Expand All @@ -134,141 +129,12 @@ def create_gemm_operator(
return ret


def generate_tensor_op_common(
math_instructions, alignment_constraints, get_tile_descriptions, batched=False
):
"""Common kernel generator to be used by archtecture specific generators."""
ops = []
layouts = [
(LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.RowMajor),
]
for math_inst in math_instructions:
tile_descriptions = get_tile_descriptions(math_inst)
data_type = [
math_inst.element_a,
math_inst.element_b,
math_inst.element_accumulator,
math_inst.element_accumulator,
]

out = create_gemm_operator(
layouts, tile_descriptions, data_type, alignment_constraints, batched=batched
)

ops.extend(out)

return ops


def generate_sm75_tensor_op_1688(out_dtype, batched=False):
"""Generate GEMM kernels for Turing."""
assert out_dtype in ["float32", "float16"]
math_instructions = {
"float32": [
MathInstruction(
[16, 8, 8],
DataType.f16,
DataType.f16,
DataType.f32,
OpcodeClass.TensorOp,
MathOperation.multiply_add,
)
],
"float16": [
MathInstruction(
[16, 8, 8],
DataType.f16,
DataType.f16,
DataType.f16,
OpcodeClass.TensorOp,
MathOperation.multiply_add,
)
],
}[out_dtype]

alignment_constraints = [8, 4, 2, 1]

def get_tile_descriptions(math_inst):
min_cc = 75
max_cc = 1024
return [
TileDescription([256, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 256, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc),
TileDescription([128, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([64, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([64, 128, 64], 2, [1, 2, 2], math_inst, min_cc, max_cc),
]

return generate_tensor_op_common(
math_instructions, alignment_constraints, get_tile_descriptions, batched
)


def generate_sm80_tensor_op_16816(out_dtype, batched=False):
"""Generate GEMM kernels for Ampere."""
assert out_dtype in ["float32", "float16"]
math_instructions = {
"float32": [
MathInstruction(
[16, 8, 16],
DataType.f16,
DataType.f16,
DataType.f32,
OpcodeClass.TensorOp,
MathOperation.multiply_add,
)
],
"float16": [
MathInstruction(
[16, 8, 16],
DataType.f16,
DataType.f16,
DataType.f16,
OpcodeClass.TensorOp,
MathOperation.multiply_add,
)
],
}[out_dtype]

alignment_constraints = [8, 4, 2]

def get_tile_descriptions(math_inst):
min_cc = 80
max_cc = 1024
max_cc_smem_limited = 80
return [
TileDescription([256, 128, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 256, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc),
TileDescription([256, 64, 32], 4, [4, 1, 1], math_inst, min_cc, max_cc),
TileDescription([64, 256, 32], 4, [1, 4, 1], math_inst, min_cc, max_cc),
TileDescription([128, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 128, 32], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 128, 32], 5, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 32], 6, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([64, 128, 32], 6, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([64, 64, 32], 10, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([256, 128, 64], 3, [4, 2, 1], math_inst, min_cc, max_cc_smem_limited),
TileDescription([128, 256, 64], 3, [2, 4, 1], math_inst, min_cc, max_cc_smem_limited),
TileDescription([256, 64, 64], 4, [4, 1, 1], math_inst, min_cc, max_cc_smem_limited),
TileDescription([64, 256, 64], 4, [1, 4, 1], math_inst, min_cc, max_cc_smem_limited),
TileDescription([128, 128, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([64, 128, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([64, 64, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc),
]

return generate_tensor_op_common(
math_instructions, alignment_constraints, get_tile_descriptions, batched
)


GENERATOR_FUNC_TABLE = {
75: generate_sm75_tensor_op_1688,
80: generate_sm80_tensor_op_16816,
}


# TODO(masahi): A sensible way to pick reasonable default kernels
DEFAULT_KERNELS = {
75: {
Expand All @@ -282,67 +148,7 @@ def get_tile_descriptions(math_inst):
}


class ProfilerEngine:
"""Compile and run a given profiler executable."""

def __init__(self, cuda_arch, cutlass_path, binary_prefix):
self.cuda_arch = cuda_arch
self.binary_prefix = binary_prefix
self.cutlass = cutlass_path
self.cflags = "-I{cutlass}/include -I{cutlass}/tools/util/include -O3 -std=c++11".format(
cutlass=cutlass_path
)
self.cflags += " -DCUTLASS_ENABLE_TENSOR_CORE_MMA=1"
self.cflags += " -gencode=arch=compute_{arch},code=[sm_{arch},compute_{arch}]".format(
arch=cuda_arch
)
self.cflags += " -Xcompiler=-Wconversion -Xcompiler=-fno-strict-aliasing"
self.cmd = "nvcc {cflags} {src} -o {output}"

def _compile(self, op):
os.makedirs(self.binary_prefix, exist_ok=True)
opath = os.path.join(self.binary_prefix, op["name"])
if os.path.exists(opath):
return
fi = tempfile.NamedTemporaryFile("w", delete=False, suffix=".cu")
fi.write(op["src"])
fi.close()
cmd = self.cmd.format(cflags=self.cflags, src=fi.name, output=opath)
os.system(cmd)
os.unlink(fi.name)

def compile_all(self, ops, use_multiprocessing=False):
"""Compile all profiler executables."""
if use_multiprocessing:
pool = multiprocessing.Pool(multiprocessing.cpu_count())
pool.map(self._compile, ops)
else:
for op in ops:
self._compile(op)

def evaluate(self, op, args):
"""Run the profiler executable corresponding to op_name with args."""
op_name = op["name"]
opath = os.path.join(self.binary_prefix, op_name)
if not os.path.exists(opath):
self._compile(op)
cmd = [opath]
if args is not None:
cmd.append(str(args[0]))
cmd.append(str(args[1]))
cmd.append(str(args[2]))
if len(args) > 3:
cmd.append(str(args[3]))
try:
sp = subprocess.run(cmd, capture_output=True, check=True)
rt = float(sp.stdout)
logger.info("%s, %f", op_name, rt)
except subprocess.CalledProcessError:
rt = -1
return rt


class CutlassGemmProfiler(object):
class CutlassGemmProfiler:
"""Profile all candidate kernels and select the best one."""

def __init__(self, sm, cutlass_path, binary_path):
Expand All @@ -364,7 +170,9 @@ def get_default(self, out_dtype, batched=False):
"""Return the default kernel for the requested architecture.
For now, the default kernel was picked arbitrary.
"""
ops = GENERATOR_FUNC_TABLE[self.sm](out_dtype, batched)
ops = GENERATOR_FUNC_TABLE[self.sm](
out_dtype, op_creator=partial(create_gemm_operator, batched=batched)
)
default_kernel_name = DEFAULT_KERNELS[self.sm][out_dtype]
filtered = list(filter(lambda op: op["name"] == default_kernel_name, ops))
assert len(filtered) == 1
Expand All @@ -380,7 +188,9 @@ def profile(
if (M, N, K) in self.cache:
return self.cache[(M, N, K)]

ops = GENERATOR_FUNC_TABLE[self.sm](out_dtype, batched)
ops = GENERATOR_FUNC_TABLE[self.sm](
out_dtype, op_creator=partial(create_gemm_operator, batched=batched)
)
ops = list(filter(lambda op: self.check_align(op["name"], M), ops))

for op in ops:
Expand Down
Loading

0 comments on commit d8f1eb3

Please sign in to comment.