Skip to content

Commit

Permalink
examples: add an Lattice Boltzmann Method simulation (#888) (#894)
Browse files Browse the repository at this point in the history
Co-authored-by: Bruno-Vdr <bruno@asterope.fr>
  • Loading branch information
larpon and Bruno-Vdr authored Jan 14, 2025
1 parent 0101891 commit 4139b5f
Show file tree
Hide file tree
Showing 11 changed files with 869 additions and 0 deletions.
176 changes: 176 additions & 0 deletions examples/lbm/cell.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
module main

import math
import rand

// This file contains Code and data structures for a Lattice-Boltzmann-Method (LBM)
// fluid flow simulation. The simulation is 2 Dimension, with 9 possible directions (D2Q9)
//
// 8 1 2
//
// 7 0 3
//
// 6 5 4

// Vi is an enum for direction vector of D2Q9 Lattice.
pub enum Vi {
center = 0
north = 1
north_east = 2
//
east = 3
south_east = 4
south = 5
//
south_west = 6
west = 7
north_west = 8
}

// vfmt off
const opp = [
Vi.center, Vi.south, Vi.south_west,
Vi.west, Vi.north_west, Vi.north,
Vi.north_east, Vi.east, Vi.south_east,
]!

// Array defined here in order to loop over a Vi enum.
// Warning: This array must be coherent with Vi enum order !
const vi = [
Vi.center, Vi.north, Vi.north_east,
Vi.east, Vi.south_east, Vi.south,
Vi.south_west, Vi.west, Vi.north_west,
]!

// wi is the weight of mini-cells.
// Warning: This array must be coherent with Vi enum order !
const wi = [
f64(16.0 / 36.0), 4.0 / 36.0, 1.0 / 36.0,
4.0 / 36.0, 1.0 / 36.0, 4.0 / 36.0,
1.0 / 36.0, 4.0 / 36.0, 1.0 / 36.0,
]!
// vfmt on

// opposite returns vector of opposite direction. Yes Enum can have methods in V.
// Warning: This array must be coherent with Vi enum order !
fn (v Vi) opposite() Vi {
return opp[int(v)]
}

// Discrete velocity vectors, by component, with respect to SDL display orientation (North is negative on y axis)
// f64 and int are provided to avoid unnecessary casts.
// Warning: These vectors must be coherent with Vi enum order !
const dvx_f = [0.0, 0.0, 1.0, 1.0, 1.0, 0.0, -1.0, -1.0, -1.0]!
const dvy_f = [0.0, -1.0, -1.0, 0.0, 1.0, 1.0, 1.0, 0.0, -1.0]!
const dvx_i = [0, 0, 1, 1, 1, 0, -1, -1, -1]!
const dvy_i = [0, -1, -1, 0, 1, 1, 1, 0, -1]!

struct Cell {
mut:
obstacle bool
sp [9]f64
}

// Cell.new built, and initializes a default Cell.
// Warning: sp values must be coherent with Vi enum order !
fn Cell.new(o bool) Cell {
return Cell{
obstacle: o
sp: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]!
} // ! means fixed size array ! Will change a day !
}

// Return a Cell with all mini-cell set to Zero
fn Cell.zero(o bool) Cell {
return Cell{
obstacle: o
sp: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]!
}
}

// normalize perform a normalisation on the cell so that average desnsity is rho0
fn (mut c Cell) normalize() {
rho := c.rho()
for mut v in c.sp {
v *= (rho0 / rho)
}
}

// randomize add some randomness on the cell.
fn (mut c Cell) randomize(i f64) {
for v in vi {
r := rand.f64() * i
c.sum(v, r)
}
}

// get returns mini-cell depending on the given speed vector.
fn (c &Cell) get(v Vi) f64 {
return c.sp[int(v)]
}

// set forces a mini-cell value given its speed vector.
fn (mut c Cell) set(v Vi, value f64) {
c.sp[int(v)] = value
}

// increase (add value) to a mini-cell value given its speed vector.
fn (mut c Cell) sum(v Vi, value f64) {
c.sp[int(v)] += value
}

// rho computes whole cell's density
fn (c &Cell) rho() f64 {
mut sum := 0.0
for v in c.sp {
sum += v
}
assert math.is_nan(sum) == false
return sum
}

// ux computes x (horizontal) component of cell speed vector.
fn (c &Cell) ux() f64 {
rho := c.rho()
r := 1.0 / rho * (c.sp[Vi.north_east] + c.sp[Vi.east] + c.sp[Vi.south_east] - c.sp[Vi.south_west] - c.sp[Vi.west] - c.sp[Vi.north_west])
assert math.is_nan(r) == false
return r
}

// uy computes y (vertical) component of cell speed vector.
fn (c &Cell) uy() f64 {
rho := c.rho()
r := 1.0 / rho * (-c.sp[Vi.north] - c.sp[Vi.north_east] - c.sp[Vi.north_west] +
c.sp[Vi.south_east] + c.sp[Vi.south] + c.sp[Vi.south_west])
assert math.is_nan(r) == false
return r
}

// ux_no_rho computes x (horizontal) component of cell speed vector, when rho is already known and passed as param.
fn (c &Cell) ux_no_rho(rho f64) f64 {
r := 1.0 / rho * (c.sp[Vi.north_east] + c.sp[Vi.east] + c.sp[Vi.south_east] - c.sp[Vi.south_west] - c.sp[Vi.west] - c.sp[Vi.north_west])
return r
}

// uy_no_rho computes y (vertical) component of cell speed vector, when rho is already known and passed as param.
fn (c &Cell) uy_no_rho(rho f64) f64 {
r := 1.0 / rho * (-c.sp[Vi.north] - c.sp[Vi.north_east] - c.sp[Vi.north_west] +
c.sp[Vi.south_east] + c.sp[Vi.south] + c.sp[Vi.south_west])
return r
}

// equ computes result of equilibrium function.
fn (c &Cell) equ(i Vi) f64 {
rho := c.rho()
ux := c.ux_no_rho(rho)
uy := c.uy_no_rho(rho)

t1 := 3.0 * (ux * dvx_f[i] + uy * dvy_f[i])
mut t2 := (ux * dvx_f[i] + uy * dvy_f[i])

t2 *= t2 // t2^2
t2 *= (9.0 / 2.0)
t3 := (3.0 / 2.0) * (ux * ux + uy * uy)
r := wi[i] * rho * (1.0 + t1 + t2 - t3)
return r
}
46 changes: 46 additions & 0 deletions examples/lbm/colormap.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
module main

import arrays

struct Colormap {}

// build a linear color map ARGB8888 from color c1 to c2, of steps colors
pub fn Colormap.build(c1 u32, c2 u32, steps int) []u32 {
assert steps > 1, 'Error, generating colormap needs at least two steps.'
mut cm := []u32{cap: steps}

// split c1 & c2 to RGB channels.
mut c1_r := f64((c1 & 0xFF0000) >> 16)
mut c1_g := f64((c1 & 0xFF00) >> 8)
mut c1_b := f64((c1 & 0xFF))

c2_r := f64((c2 & 0xFF0000) >> 16)
c2_g := f64((c2 & 0xFF00) >> 8)
c2_b := f64((c2 & 0xFF))

delta_r := (c2_r - c1_r) / f64(steps - 1)
delta_g := (c2_g - c1_g) / f64(steps - 1)
delta_b := (c2_b - c1_b) / f64(steps - 1)

cm << (0xFF000000 | c1) // Emit exact start color.
for _ in 1 .. steps - 1 {
c1_r += delta_r
c1_g += delta_g
c1_b += delta_b

// Recompose 3 channels to ARGB8888 color.
mut c := u32(0xFF_00_00_00)
c |= u32(c1_r) << 16
c |= u32(c1_g) << 8
c |= u32(c1_b)
cm << c
}
cm << (0xFF000000 | c2) // Emit exact end color.
return cm
}

// dual creates a color map with start color, intermediate color and final color, equaly sized.
fn Colormap.dual(c1 u32, c2 u32, c3 u32, steps int) []u32 {
assert steps > 2, 'Error, generating dual-colormap needs at least three steps.'
return arrays.append(Colormap.build(c1, c2, steps / 2), Colormap.build(c2, c3, steps - (steps / 2)))
}
Loading

0 comments on commit 4139b5f

Please sign in to comment.