About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Base (i.e., lower-level) extensions to basic linear algebra subprograms (BLAS).
npm install @stdlib/blas-ext-base
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var extblas = require( '@stdlib/blas-ext-base' );
Namespace for "base" (i.e., lower-level) extensions to basic linear algebra subprograms (BLAS).
var ns = extblas;
// returns {...}
dapx( N, alpha, x, strideX )
: add a scalar constant to each element in a double-precision floating-point strided array.dapxsum( N, alpha, x, strideX )
: add a scalar constant to each double-precision floating-point strided array element and compute the sum.dapxsumkbn( N, alpha, x, strideX )
: add a scalar constant to each double-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.dapxsumkbn2( N, alpha, x, strideX )
: add a scalar constant to each double-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.dapxsumors( N, alpha, x, strideX )
: add a scalar constant to each double-precision floating-point strided array element and compute the sum using ordinary recursive summation.dapxsumpw( N, alpha, x, strideX )
: add a scalar constant to each double-precision floating-point strided array element and compute the sum using pairwise summation.dasumpw( N, x, strideX )
: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements using pairwise summation.dcusum( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements.dcusumkbn( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.dcusumkbn2( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.dcusumors( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements using ordinary recursive summation.dcusumpw( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements using pairwise summation.dfill( N, alpha, x, strideX )
: fill a double-precision floating-point strided array with a specified scalar constant.dnanasum( N, x, strideX )
: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoringNaN
values.dnanasumors( N, x, strideX )
: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoringNaN
values and using ordinary recursive summation.dnannsum( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values.dnannsumkbn( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.dnannsumkbn2( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using a second-order iterative Kahan–Babuška algorithm.dnannsumors( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using ordinary recursive summation.dnannsumpw( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using pairwise summation.dnansum( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values.dnansumkbn( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.dnansumkbn2( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using a second-order iterative Kahan–Babuška algorithm.dnansumors( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using ordinary recursive summation.dnansumpw( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using pairwise summation.drev( N, x, strideX )
: reverse a double-precision floating-point strided array in-place.dsapxsum( N, alpha, x, strideX )
: add a scalar constant to each single-precision floating-point strided array element, and compute the sum using extended accumulation and returning an extended precision result.dsapxsumpw( N, alpha, x, strideX )
: add a constant to each single-precision floating-point strided array element, and compute the sum using pairwise summation with extended accumulation and returning an extended precision result.dsnannsumors( N, x, strideX, out, strideOut )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.dsnansum( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values, using extended accumulation, and returning an extended precision result.dsnansumors( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.dsnansumpw( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values, using pairwise summation with extended accumulation, and returning an extended precision result.dsort2hp( N, order, x, strideX, y, strideY )
: simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using heapsort.dsort2ins( N, order, x, strideX, y, strideY )
: simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using insertion sort.dsort2sh( N, order, x, strideX, y, strideY )
: simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using Shellsort.dsorthp( N, order, x, stride )
: sort a double-precision floating-point strided array using heapsort.dsortins( N, order, x, stride )
: sort a double-precision floating-point strided array using insertion sort.dsortsh( N, order, x, stride )
: sort a double-precision floating-point strided array using Shellsort.dssum( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements using extended accumulation and returning an extended precision result.dssumors( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements using ordinary recursive summation with extended accumulation and returning an extended precision result.dssumpw( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements using pairwise summation with extended accumulation and returning an extended precision result.dsum( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements.dsumkbn( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.dsumkbn2( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.dsumors( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.dsumpw( N, x, strideX )
: calculate the sum of double-precision floating-point strided array elements using pairwise summation.gapx( N, alpha, x, strideX )
: add a scalar constant to each element in a strided array.gapxsum( N, alpha, x, strideX )
: add a scalar constant to each strided array element and compute the sum.gapxsumkbn( N, alpha, x, strideX )
: add a scalar constant to each strided array element and compute the sum using an improved Kahan–Babuška algorithm.gapxsumkbn2( N, alpha, x, strideX )
: add a scalar constant to each strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.gapxsumors( N, alpha, x, strideX )
: add a scalar constant to each strided array element and compute the sum using ordinary recursive summation.gapxsumpw( N, alpha, x, strideX )
: add a scalar constant to each strided array element and compute the sum using pairwise summation.gasumpw( N, x, strideX )
: calculate the sum of absolute values (L1 norm) of strided array elements using pairwise summation.gcusum( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements.gcusumkbn( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements using an improved Kahan–Babuška algorithm.gcusumkbn2( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.gcusumors( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements using ordinary recursive summation.gcusumpw( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements using pairwise summation.gfillBy( N, x, strideX, clbk[, thisArg] )
: fill a strided array according to a provided callback function.gfill( N, alpha, x, strideX )
: fill a strided array with a specified scalar constant.gnannsumkbn( N, x, strideX, out, strideOut )
: calculate the sum of strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.gnansum( N, x, strideX )
: calculate the sum of strided array elements, ignoringNaN
values.gnansumkbn( N, x, strideX )
: calculate the sum of strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.gnansumkbn2( N, x, strideX )
: calculate the sum of strided array elements, ignoringNaN
values and using a second-order iterative Kahan–Babuška algorithm.gnansumors( N, x, strideX )
: calculate the sum of strided array elements, ignoringNaN
values and using ordinary recursive summation.gnansumpw( N, x, strideX )
: calculate the sum of strided array elements, ignoringNaN
values and using pairwise summation.grev( N, x, strideX )
: reverse a strided array in-place.gsort2hp( N, order, x, strideX, y, strideY )
: simultaneously sort two strided arrays based on the sort order of the first array using heapsort.gsort2ins( N, order, x, strideX, y, strideY )
: simultaneously sort two strided arrays based on the sort order of the first array using insertion sort.gsort2sh( N, order, x, strideX, y, strideY )
: simultaneously sort two strided arrays based on the sort order of the first array using Shellsort.gsorthp( N, order, x, stride )
: sort a strided array using heapsort.gsortins( N, order, x, stride )
: sort a strided array using insertion sort.gsortsh( N, order, x, stride )
: sort a strided array using Shellsort.gsum( N, x, stride )
: calculate the sum of strided array elements.gsumkbn( N, x, strideX )
: calculate the sum of strided array elements using an improved Kahan–Babuška algorithm.gsumkbn2( N, x, strideX )
: calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.gsumors( N, x, strideX )
: calculate the sum of strided array elements using ordinary recursive summation.gsumpw( N, x, strideX )
: calculate the sum of strided array elements using pairwise summation.sapx( N, alpha, x, strideX )
: add a scalar constant to each element in a single-precision floating-point strided array.sapxsum( N, alpha, x, strideX )
: add a scalar constant to each single-precision floating-point strided array element and compute the sum.sapxsumkbn( N, alpha, x, strideX )
: add a scalar constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.sapxsumkbn2( N, alpha, x, strideX )
: add a scalar constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.sapxsumors( N, alpha, x, strideX )
: add a scalar constant to each single-precision floating-point strided array element and compute the sum using ordinary recursive summation.sapxsumpw( N, alpha, x, strideX )
: add a scalar constant to each single-precision floating-point strided array element and compute the sum using pairwise summation.sasumpw( N, x, strideX )
: calculate the sum of absolute values (L1 norm) of single-precision floating-point strided array elements using pairwise summation.scusum( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements.scusumkbn( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.scusumkbn2( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.scusumors( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements using ordinary recursive summation.scusumpw( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements using pairwise summation.sdsapxsum( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum using extended accumulation.sdsapxsumpw( N, alpha, x, strideX )
: add a scalar constant to each single-precision floating-point strided array element and compute the sum using pairwise summation with extended accumulation.sdsnansum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using extended accumulation.sdsnansumpw( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using pairwise summation with extended accumulation.sdssum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using extended accumulation.sdssumpw( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements using pairwise summation with extended accumulation.sfill( N, alpha, x, strideX )
: fill a single-precision floating-point strided array with a specified scalar constant.snansum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values.snansumkbn( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.snansumkbn2( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using a second-order iterative Kahan–Babuška algorithm.snansumors( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using ordinary recursive summation.snansumpw( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using pairwise summation.srev( N, x, strideX )
: reverse a single-precision floating-point strided array in-place.ssort2hp( N, order, x, strideX, y, strideY )
: simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using heapsort.ssort2ins( N, order, x, strideX, y, strideY )
: simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using insertion sort.ssort2sh( N, order, x, strideX, y, strideY )
: simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using Shellsort.ssorthp( N, order, x, stride )
: sort a single-precision floating-point strided array using heapsort.ssortins( N, order, x, stride )
: sort a single-precision floating-point strided array using insertion sort.ssortsh( N, order, x, stride )
: sort a single-precision floating-point strided array using Shellsort.ssum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements.ssumkbn( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.ssumkbn2( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.ssumors( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements using ordinary recursive summation.ssumpw( N, x, strideX )
: calculate the sum of single-precision floating-point strided array elements using pairwise summation.
var objectKeys = require( '@stdlib/utils-keys' );
var ns = require( '@stdlib/blas-ext-base' );
console.log( objectKeys( ns ) );
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.