Skip to content

Calculate the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

License

Notifications You must be signed in to change notification settings

stdlib-js/blas-ext-base-scusumkbn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

scusumkbn

NPM version Build Status Coverage Status

Calculate the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

Installation

npm install @stdlib/blas-ext-base-scusumkbn

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var scusumkbn = require( '@stdlib/blas-ext-base-scusumkbn' );

scusumkbn( N, sum, x, strideX, y, strideY )

Computes the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );

scusumkbn( x.length, 0.0, x, 1, y, 1 );
// y => <Float32Array>[ 1.0, -1.0, 1.0 ]

x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
y = new Float32Array( x.length );

scusumkbn( x.length, 10.0, x, 1, y, 1 );
// y => <Float32Array>[ 11.0, 9.0, 11.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • sum: initial sum.
  • x: input Float32Array.
  • strideX: stride length for x.
  • y: output Float32Array.
  • strideY: stride length for y.

The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative sum of every other element:

var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float32Array( x.length );

var v = scusumkbn( 4, 0.0, x, 2, y, 1 );
// y => <Float32Array>[ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array-float32' );

// Initial arrays...
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float32Array( x0.length );

// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

scusumkbn( 4, 0.0, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]

scusumkbn.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm and alternative indexing semantics.

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( 3 );

scusumkbn.ndarray( 3, 0.0, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ 1.0, -1.0, 1.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the cumulative sum of every other element starting from the second element and to store in the last N elements of y starting from the last element:

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float32Array( x.length );

scusumkbn.ndarray( 4, 0.0, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]

Notes

  • If N <= 0, both functions return y unchanged.

Examples

var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var scusumkbn = require( '@stdlib/blas-ext-base-scusumkbn' );

var x = discreteUniform( 10, -100, 100, {
    'dtype': 'float32'
});
console.log( x );

var y = discreteUniform( 10, -100, 100, {
    'dtype': 'float32'
});
console.log( y );

scusumkbn( x.length, 0.0, x, 1, y, -1 );
console.log( y );

C APIs

Usage

#include "stdlib/blas/ext/base/scusumkbn.h"

stdlib_strided_scusumkbn( N, sum, *X, strideX, *Y, strideY )

Computes the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f };

stdlib_strided_scusumkbn( 4, 0.0f, x, 1, y, 1 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • sum: [in] float initial sum.
  • X: [in] float* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • Y: [out] float* output array.
  • strideY: [in] CBLAS_INT stride length for Y.
void stdlib_strided_scusumkbn( const CBLAS_INT N, const float sum, const float *X, const CBLAS_INT strideX, float *Y, const CBLAS_INT strideY );

stdlib_strided_scusumkbn_ndarray( N, sum, *X, strideX, offsetX, *Y, strideY, offsetY )

Computes the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm and alternative indexing semantics.

const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f };

stdlib_strided_scusumkbn_ndarray( 4, 0.0f, x, 1, 0, y, 1, 0 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • sum: [in] float initial sum.
  • X: [in] float* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • offsetX: [in] CBLAS_INT starting index for X.
  • Y: [out] float* output array.
  • strideY: [in] CBLAS_INT stride length for Y.
  • offsetY: [in] CBLAS_INT starting index for Y.
void stdlib_strided_scusumkbn_ndarray( const CBLAS_INT N, const float sum, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, float *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );

Examples

#include "stdlib/blas/ext/base/scusumkbn.h"
#include <stdio.h>

int main( void ) {
    // Create strided arrays:
    const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
    float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };

    // Specify the number of elements:
    const int N = 4;

    // Specify stride lengths:
    const int strideX = 2;
    const int strideY = -2;

    // Compute the cumulative sum:
    stdlib_strided_scusumkbn( N, 0.0f, x, strideX, y, strideY );

    // Print the result:
    for ( int i = 0; i < 8; i++ ) {
        printf( "y[ %d ] = %f\n", i, y[ i ] );
    }
}

References

  • Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.