About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the dot product with extended accumulation and result of two single-precision floating-point vectors.
The dot product (or scalar product) is defined as
npm install @stdlib/blas-base-dsdot
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var dsdot = require( '@stdlib/blas-base-dsdot' );
Calculates the dot product of vectors x
and y
with extended accumulation and result.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
var z = dsdot( x.length, x, 1, y, 1 );
// returns -5.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float32Array
. - strideX: index increment for
x
. - y: input
Float32Array
. - strideY: index increment for
y
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to calculate the dot product of every other value in x
and the first N
elements of y
in reverse order,
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var z = dsdot( 3, x, 2, y, -1 );
// returns 9.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array-float32' );
// Initial arrays...
var x0 = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var z = dsdot( 3, x1, -2, y1, 1 );
// returns 128.0
Calculates the dot product of x
and y
with extended accumulation and result and using alternative indexing semantics.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
var z = dsdot.ndarray( x.length, x, 1, 0, y, 1, 0 );
// returns -5.0
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the dot product of every other value in x
starting from the second value with the last 3 elements in y
in reverse order
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var z = dsdot.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
// returns 128.0
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var dsdot = require( '@stdlib/blas-base-dsdot' );
var opts = {
'dtype': 'float32'
};
var x = discreteUniform( 10, 0, 100, opts );
console.log( x );
var y = discreteUniform( x.length, 0, 10, opts );
console.log( y );
var out = dsdot.ndarray( x.length, x, 1, 0, y, -1, y.length-1 );
console.log( out );
#include "stdlib/blas/base/dsdot.h"
Computes the dot product of two single-precision floating-point vectors with extended accumulation and result.
const float x[] = { 4.0f, 2.0f, -3.0f, 5.0f, -1.0f };
const float y[] = { 2.0f, 6.0f, -1.0f, -4.0f, 8.0f };
double v = c_dsdot( 5, x, 1, y, 1 );
// returns -5.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
first input array. - strideX:
[in] CBLAS_INT
index increment forX
. - Y:
[in] float*
second input array. - strideY:
[in] CBLAS_INT
index increment forY
.
double c_dsdot( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const float *Y, const CBLAS_INT strideY );
Computes the dot product of two single-precision floating-point vectors with extended accumulation and result and using alternative indexing semantics.
const float x[] = { 4.0f, 2.0f, -3.0f, 5.0f, -1.0f };
const float y[] = { 2.0f, 6.0f, -1.0f, -4.0f, 8.0f };
double v = c_dsdot_ndarray( 5, x, 1, 0, y, 1, 0 );
// returns -5.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
first input array. - strideX:
[in] CBLAS_INT
index increment forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - Y:
[in] float*
second input array. - strideY:
[in] CBLAS_INT
index increment forY
. - offsetY:
[in] CBLAS_INT
starting index forY
.
double c_dsdot_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, const float *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );
#include "stdlib/blas/base/dsdot.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
const float x[] = { 1.0f, -2.0f, 3.0f, -4.0f, 5.0f, -6.0f, 7.0f, -8.0f };
const float y[] = { 1.0f, -2.0f, 3.0f, -4.0f, 5.0f, -6.0f, 7.0f, -8.0f };
// Specify the number of elements:
const int N = 8;
// Specify strides:
const int strideX = 1;
const int strideY = -1;
// Compute the dot product:
double d = c_dsdot( N, x, strideX, y, strideY );
// Print the result:
printf( "dot product: %lf\n", d );
// Compute the dot product:
d = c_dsdot_ndarray( N, x, strideX, 0, y, strideY, N-1 );
// Print the result:
printf( "dot product: %lf\n", d );
}
- Lawson, Charles L., Richard J. Hanson, Fred T. Krogh, and David Ronald Kincaid. 1979. "Algorithm 539: Basic Linear Algebra Subprograms for Fortran Usage [F1]." ACM Transactions on Mathematical Software 5 (3). New York, NY, USA: Association for Computing Machinery: 324–25. doi:10.1145/355841.355848.
@stdlib/blas-base/ddot
: calculate the dot product of two double-precision floating-point vectors.@stdlib/blas-base/sdot
: calculate the dot product of two single-precision floating-point vectors.@stdlib/blas-base/sdsdot
: calculate the dot product of two single-precision floating-point vectors with extended accumulation.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.