Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Avoid the use of shared variable. #50

Merged
merged 7 commits into from
Aug 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions .github/workflows/pr.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -15,16 +15,16 @@ jobs:
- checks
- cpp-build-test
secrets: inherit
uses: rapidsai/shared-workflows/.github/workflows/pr-builder.yaml@branch-24.04
uses: rapidsai/shared-workflows/.github/workflows/pr-builder.yaml@branch-24.10
checks:
secrets: inherit
uses: rapidsai/shared-workflows/.github/workflows/checks.yaml@branch-24.04
uses: rapidsai/shared-workflows/.github/workflows/checks.yaml@branch-24.10
with:
enable_check_generated_files: false
cpp-build-test:
needs: checks
secrets: inherit
uses: rapidsai/shared-workflows/.github/workflows/conda-cpp-tests.yaml@branch-24.04
uses: rapidsai/shared-workflows/.github/workflows/conda-cpp-tests.yaml@branch-24.10
with:
build_type: pull-request
script: ci/build_and_test.sh
Expand Down
2 changes: 1 addition & 1 deletion CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ cmake_minimum_required(VERSION 3.23.1 FATAL_ERROR)

include(FetchContent)

project(GPUTreeShap VERSION 24.04.00 LANGUAGES CXX CUDA)
project(GPUTreeShap VERSION 24.10.00 LANGUAGES CXX CUDA)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CUDA_STANDARD 17)

Expand Down
2 changes: 1 addition & 1 deletion Doxyfile.in
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ PROJECT_NAME = "GPUTreeShap"
# could be handy for archiving the generated documentation or if some version
# control system is used.

PROJECT_NUMBER = "24.04"
PROJECT_NUMBER = "24.10"

# Using the PROJECT_BRIEF tag one can provide an optional one line description
# for a project that appears at the top of each page and should give viewer a
Expand Down
8 changes: 2 additions & 6 deletions GPUTreeShap/gpu_treeshap.h
Original file line number Diff line number Diff line change
Expand Up @@ -459,15 +459,13 @@ __global__ void __launch_bounds__(GPUTREESHAP_MAX_THREADS_PER_BLOCK)
const PathElement<SplitConditionT>* path_elements,
const size_t* bin_segments, size_t num_groups, double* phis) {
// Use shared memory for structs, otherwise nvcc puts in local memory
__shared__ DatasetT s_X;
s_X = X;
__shared__ PathElement<SplitConditionT> s_elements[kBlockSize];
PathElement<SplitConditionT>& e = s_elements[threadIdx.x];

size_t start_row, end_row;
bool thread_active;
ConfigureThread<DatasetT, kBlockSize, kRowsPerWarp>(
s_X, bins_per_row, path_elements, bin_segments, &start_row, &end_row, &e,
X, bins_per_row, path_elements, bin_segments, &start_row, &end_row, &e,
&thread_active);
uint32_t mask = __ballot_sync(FULL_MASK, thread_active);
if (!thread_active) return;
Expand Down Expand Up @@ -564,15 +562,13 @@ __global__ void __launch_bounds__(GPUTREESHAP_MAX_THREADS_PER_BLOCK)
const size_t* bin_segments, size_t num_groups,
double* phis_interactions) {
// Use shared memory for structs, otherwise nvcc puts in local memory
__shared__ DatasetT s_X;
s_X = X;
__shared__ PathElement<SplitConditionT> s_elements[kBlockSize];
PathElement<SplitConditionT>* e = &s_elements[threadIdx.x];

size_t start_row, end_row;
bool thread_active;
ConfigureThread<DatasetT, kBlockSize, kRowsPerWarp>(
s_X, bins_per_row, path_elements, bin_segments, &start_row, &end_row, e,
X, bins_per_row, path_elements, bin_segments, &start_row, &end_row, e,
&thread_active);
uint32_t mask = __ballot_sync(FULL_MASK, thread_active);
if (!thread_active) return;
Expand Down
109 changes: 71 additions & 38 deletions benchmark/benchmark.py
Original file line number Diff line number Diff line change
@@ -1,42 +1,62 @@
import xgboost as xgb
import numpy as np
# Copyright (c) 2020-2024, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import annotations

import argparse
import time
from sklearn import datasets
from joblib import Memory

import numpy as np
import pandas as pd
import argparse
import xgboost as xgb
from joblib import Memory
from sklearn import datasets

memory = Memory('./cachedir', verbose=0)


# Contains a dataset in numpy format as well as the relevant objective and metric
class TestDataset:
def __init__(self, name, Xy, objective
):
def __init__(self, name, Xy, objective):
self.name = name
self.objective = objective
self.X, self.y = Xy

def set_params(self, params_in):
params_in['objective'] = self.objective
params_in["objective"] = self.objective
if self.objective == "multi:softmax":
params_in["num_class"] = int(np.max(self.y) + 1)
return params_in

def get_dmat(self):
return xgb.DMatrix(self.X, self.y)
return xgb.QuantileDMatrix(self.X, self.y, enable_categorical=True)

def get_test_dmat(self, num_rows):
rs = np.random.RandomState(432)
return xgb.DMatrix(self.X[rs.randint(0, self.X.shape[0], size=num_rows), :])
if hasattr(self.X, "iloc"):
x = self.X.iloc[rs.randint(0, self.X.shape[0], size=num_rows), :]
else:
x = self.X[rs.randint(0, self.X.shape[0], size=num_rows), :]
return xgb.DMatrix(x, enable_categorical=True)


@memory.cache
def train_model(dataset, max_depth, num_rounds):
def train_model(dataset: TestDataset, max_depth: int, num_rounds: int) -> xgb.Booster:
dmat = dataset.get_dmat()
params = {'tree_method': 'gpu_hist', 'max_depth': max_depth, 'eta': 0.01}
params = {'tree_method': 'hist', "device": "gpu", 'max_depth': max_depth, 'eta': 0.01}
params = dataset.set_params(params)
model = xgb.train(params, dmat, num_rounds, [(dmat, 'train')])
model = xgb.train(params, dmat, num_rounds, evals=[(dmat, 'train')])
return model


Expand Down Expand Up @@ -64,33 +84,34 @@ def get_model_stats(model):


class Model:
def __init__(self, name, dataset, num_rounds, max_depth):
def __init__(
self, name: str, dataset: TestDataset, num_rounds: int, max_depth: int
) -> None:
self.name = name
self.dataset = dataset
self.num_rounds = num_rounds
self.max_depth = max_depth
print("Training " + name)
self.xgb_model = train_model(dataset, max_depth, num_rounds)
self.num_trees, self.num_leaves, self.average_depth = get_model_stats(self.xgb_model)
self.num_trees, self.num_leaves, self.average_depth = get_model_stats(
self.xgb_model
)


def check_accuracy(shap, margin):
if len(shap.shape) == 2:
sum = np.sum(shap, axis=len(shap.shape) - 1)
else:
sum = np.sum(shap, axis=(len(shap.shape) - 1, len(shap.shape) - 2))
shap = np.sum(shap, axis=len(shap.shape) - 1)

if not np.allclose(sum, margin, 1e-1, 1e-1):
if not np.allclose(shap, margin, 1e-1, 1e-1):
print("Warning: Failed 1e-1 accuracy")


def get_models(model):
def get_models(model: str) -> list[Model]:
test_datasets = [
TestDataset("adult", fetch_adult(), "binary:logistic"),
TestDataset("covtype", datasets.fetch_covtype(return_X_y=True), "multi:softmax"),
TestDataset("cal_housing", datasets.fetch_california_housing(return_X_y=True),
"reg:squarederror"),
TestDataset("fashion_mnist", fetch_fashion_mnist(), "multi:softmax"),
TestDataset("adult", fetch_adult(), "binary:logistic"),
]

models = []
Expand All @@ -110,33 +131,46 @@ def get_models(model):
def print_model_stats(models, args):
# get model statistics
models_df = pd.DataFrame(
columns=["model", "num_rounds", "num_trees", "num_leaves", "max_depth", "average_depth"])
for m in models:
models_df = models_df.append(
{"model": m.name, "num_rounds": m.num_rounds, "num_trees": m.num_trees,
"num_leaves": m.num_leaves, "max_depth": m.max_depth,
"average_depth": m.average_depth},
ignore_index=True)
columns=[
"model",
"num_rounds",
"num_trees",
"num_leaves",
"max_depth",
"average_depth",
]
)
for i, m in enumerate(models):
df = pd.DataFrame.from_dict(
{
"model": [m.name],
"num_rounds": [m.num_rounds],
"num_trees": [m.num_trees],
"num_leaves": [m.num_leaves],
"max_depth": [m.max_depth],
"average_depth": [m.average_depth],
}
)
models_df = pd.concat([models_df, df])
print(models_df)
print("Writing model statistics to: " + args.out_models)
models_df.to_csv(args.out_models, index=False)


def run_benchmark(args):
models = get_models(args)
def run_benchmark(args: argparse.Namespace) -> None:
models = get_models(args.model)
print_model_stats(models, args)

predictors = ["cpu_predictor", "gpu_predictor"]
# predictors = ["gpu_predictor"]
devices = ["cpu", "gpu"]
test_rows = args.nrows
df = pd.DataFrame(
columns=["model", "test_rows", "cpu_time(s)", "cpu_std", "gpu_time(s)", "gpu_std",
"speedup"])
for m in models:
dtest = m.dataset.get_test_dmat(test_rows)
result_row = {"model": m.name, "test_rows": test_rows, "cpu_time(s)": 0.0}
for p in predictors:
m.xgb_model.set_param({"predictor": p})
for p in devices:
m.xgb_model.set_param({"device": p})
samples = []
for i in range(args.niter):
start = time.perf_counter()
Expand All @@ -145,7 +179,7 @@ def run_benchmark(args):
else:
xgb_shap = m.xgb_model.predict(dtest, pred_contribs=True)
samples.append(time.perf_counter() - start)
if p is "gpu_predictor":
if p == "gpu":
result_row["gpu_time(s)"] = np.mean(samples)
result_row["gpu_std"] = np.std(samples)
else:
Expand All @@ -156,8 +190,7 @@ def run_benchmark(args):
check_accuracy(xgb_shap, margin)

result_row["speedup"] = result_row["cpu_time(s)"] / result_row["gpu_time(s)"]
df = df.append(result_row,
ignore_index=True)
df = pd.concat([df, pd.DataFrame.from_records([result_row])])
print(df)
print("Writing results to: " + args.out)
df.to_csv(args.out, index=False)
Expand Down
4 changes: 4 additions & 0 deletions dependencies.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,10 @@ dependencies:
cuda: "12.2"
packages:
- cuda-version=12.2
- matrix:
cuda: "12.5"
packages:
- cuda-version=12.5
cuda:
specific:
- output_types: conda
Expand Down
2 changes: 1 addition & 1 deletion fetch_rapids.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# the License.
# =============================================================================
if(NOT EXISTS ${CMAKE_CURRENT_BINARY_DIR}/GPUTREESHAP_RAPIDS.cmake)
file(DOWNLOAD https://raw.githubusercontent.com/rapidsai/rapids-cmake/branch-24.04/RAPIDS.cmake
file(DOWNLOAD https://raw.githubusercontent.com/rapidsai/rapids-cmake/branch-24.10/RAPIDS.cmake
${CMAKE_CURRENT_BINARY_DIR}/GPUTREESHAP_RAPIDS.cmake
)
endif()
Expand Down