Skip to content

quarter-100/klue-level2-nlp-09

 
 

Repository files navigation

KLUE Relation Extraction Competition, Naver Boostcamp AI Tech 2기

Competition Abstract

🤗 KLUE RE(Relation Extraction) Dataset으로 주어진 문장의 지정된 두 Entity의 관계를 추출, 분류하는 Task.
🤗 Public, Private 데이터가 분리된 Leaderboard 평가가 이루어짐.
🤗 하루 10회로 모델 제출 제한

Our solutions

  • 'klue/roberta-large' with BiLSTM
  • Modify Input format
    • Typed Entity Marker with Punctuation
    • Add Query like Question and Answering
  • Augmentation
    • Subject & Object Entity Random Masking
    • AEDA
    • Random Delete
    • Entity swap
  • Ensemble
    • Stratified K-Fold & OOF(Out-of-Fold) Prediction
    • K-fold Ensemble via weighted soft voting

최종 순위 2등!


Docs

Quickstart

Installation

pip install -r requirements.txt

Train model

# default wandb setting in train.py
run = wandb.init(project= 'klue', entity= 'quarter100', name= f'KFOLD_{fold}_{args.wandb_path}')
python train.py

Models are saved in "./best_model/".

Inference

python inference_fold.py

Prediction csv files are saved in "./prediction".

Ensemble

python vote.py

Ensemble result is saved in "./prediction/submission_fold_total.csv".

About

[2nd] KLUE Relation Extraction Competition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.0%
  • Jupyter Notebook 10.9%
  • Shell 0.1%