forked from boostcampaitech2/klue-level2-nlp-09
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
33 lines (25 loc) · 1.32 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, AutoConfig
from torch.cuda.amp import autocast
class Model(nn.Module):
def __init__(self, MODEL_NAME):
super().__init__()
self.model_config= AutoConfig.from_pretrained(MODEL_NAME)
self.model_config.num_labels= 30
self.model= AutoModel.from_pretrained(MODEL_NAME, config= self.model_config)
self.hidden_dim= self.model_config.hidden_size # roberta hidden dim = 1024
self.lstm= nn.LSTM(input_size= self.hidden_dim, hidden_size= self.hidden_dim, num_layers= 2, dropout= 0.2,
batch_first= True, bidirectional= True)
self.fc= nn.Linear(self.hidden_dim*2, self.model_config.num_labels)
@autocast()
def forward(self, input_ids, attention_mask):
# BERT output= (16, 244, 1024) (batch, seq_len, hidden_dim)
output= self.model(input_ids= input_ids, attention_mask= attention_mask)[0]
# LSTM last hidden, cell state shape : (2, 244, 1024) (num_layer, seq_len, hidden_size)
hidden, (last_hidden, last_cell)= self.lstm(output)
# (16, 1024) (batch, hidden_dim)
cat_hidden= torch.cat((last_hidden[0], last_hidden[1]), dim= 1)
logits= self.fc(cat_hidden)
return {'logits': logits}