Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FX] disable 2 of conv3d and type_as tests #1224

Merged
merged 6 commits into from
Aug 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .circleci/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -583,7 +583,7 @@ parameters:
# Nightly platform config
torch-nightly-build:
type: string
default: "1.13.0.dev20220715+cu113"
default: "1.13.0.dev20220731+cu113"
torch-nightly-build-index:
type: string
default: "https://download.pytorch.org/whl/nightly/cu113"
Expand Down
8 changes: 4 additions & 4 deletions core/conversion/conversionctx/ConversionCtx.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
}

cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
if (settings.workspace_size != 0){
if (settings.workspace_size != 0) {
cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
}

Expand All @@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
"DLA supports only fp16 or int8 precision");
cfg->setDLACore(settings.device.dla_core);
if (settings.dla_sram_size != 1048576){
if (settings.dla_sram_size != 1048576) {
cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
}
if (settings.dla_local_dram_size != 1073741824){
if (settings.dla_local_dram_size != 1073741824) {
cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
}
if (settings.dla_global_dram_size != 536870912){
if (settings.dla_global_dram_size != 536870912) {
cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
}
}
Expand Down
21 changes: 12 additions & 9 deletions core/conversion/converters/converter_util.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -207,13 +207,13 @@ nvinfer1::ITensor* clamp(
nvinfer1::ITensor* lower_bound,
nvinfer1::ITensor* upper_bound,
std::string const& name) {

auto max_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMAX, x, lower_bound, "max layer for " + name);
TORCHTRT_CHECK(max_layer, "Unable to create max layer for clamp");
LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp");
auto max_itensor = max_layer->getOutput(0);

auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
auto min_layer =
add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
TORCHTRT_CHECK(min_layer, "Unable to create min layer for clamp");
LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp");
auto min_itensor = min_layer->getOutput(0);
Expand All @@ -227,13 +227,13 @@ nvinfer1::ITensor* clamp_to_input_dim(
nvinfer1::ITensor* input_dim,
int nbdims,
std::string const& name) {

auto zero = torch::zeros({nbdims}).to(torch::kI32);
auto zero_itensor = tensor_to_const(ctx, zero);
auto one = torch::ones({nbdims}).to(torch::kI32);
auto one_itensor = tensor_to_const(ctx, one);

auto upper_bound_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
auto upper_bound_layer =
add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
TORCHTRT_CHECK(upper_bound_layer, "Unable to create sub layer for clamp to inputDim");
LOG_DEBUG(ctx->logger, "Create " << upper_bound_layer->getName() << " for clamp to inputDim");
auto upper_bound = upper_bound_layer->getOutput(0);
Expand All @@ -243,7 +243,8 @@ nvinfer1::ITensor* clamp_to_input_dim(
LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp to inputDim");
auto max_itensor = max_layer->getOutput(0);

auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
auto min_layer =
add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
TORCHTRT_CHECK(min_layer, "Unable to create min_layer for clamp to inputDim");
LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp to inputDim");
auto min_itensor = min_layer->getOutput(0);
Expand All @@ -257,7 +258,6 @@ nvinfer1::ITensor* normalize_indices(
nvinfer1::ITensor* indices,
int nbdims,
std::string const& name) {

auto zero = torch::zeros({nbdims}).to(torch::kI32);
auto neg = -torch::ones({nbdims}).to(torch::kI32);
auto zero_itensor = tensor_to_const(ctx, zero);
Expand Down Expand Up @@ -307,17 +307,20 @@ nvinfer1::ITensor* get_slice_size(
at::Tensor one_tensor = torch::ones({nbdims}).to(torch::kI32);
auto one_itensor = tensor_to_const(ctx, one_tensor);

auto sub_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
auto sub_layer =
add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
TORCHTRT_CHECK(sub_layer, "Unable to create sub layer in calculate_output_size");
LOG_DEBUG(ctx->logger, "Create " << sub_layer->getName() << " for calculate_output_size");
auto sub_itensor = sub_layer->getOutput(0);

auto div_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
auto div_layer = add_elementwise(
ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
TORCHTRT_CHECK(div_layer, "Unable to create div layer in calculate_output_size");
LOG_DEBUG(ctx->logger, "Create " << div_layer->getName() << " for calculate_output_size");
auto div_itensor = div_layer->getOutput(0);

auto add_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
auto add_layer = add_elementwise(
ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
TORCHTRT_CHECK(add_layer, "Unable to create add layer in calculate_output_size");
LOG_DEBUG(ctx->logger, "Create " << add_layer->getName() << " for calculate_output_size");
auto size_itensor = add_layer->getOutput(0);
Expand Down
2 changes: 1 addition & 1 deletion core/conversion/converters/converter_util.h
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
#pragma once

#include <limits>
#include <map>
#include <string>
#include <limits>

#include "core/conversion/conversionctx/ConversionCtx.h"
#include "core/conversion/converters/Weights.h"
Expand Down
Loading