Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FX] disable 2 of conv3d and type_as tests #1224

Merged
merged 6 commits into from
Aug 5, 2022
Merged

Conversation

frank-wei
Copy link
Contributor

@frank-wei frank-wei commented Aug 2, 2022

Description

  1. The torch-tensorrt new release triggered the bug of conv3d groups test. Potential reason could be TRT 8.4.1
    With current default workspace size, it complains insufficient workspace size
[08/02/2022-20:17:52] [TRT] [W] The implicit batch dimension mode has been deprecated. Please create the network with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag whenever possible.
[08/02/2022-20:17:52] [TRT] [W] TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.3.2
[08/02/2022-20:17:52] [TRT] [W] GPU error during getBestTactic: [CONVOLUTION]-[acc_ops.conv3d]-[conv3d_1] : an illegal memory access was encountered
[08/02/2022-20:17:52] [TRT] [E] 1: [virtualMemoryBuffer.cpp::~StdVirtualMemoryBufferImpl::104] Error Code 1: Cuda Runtime (an illegal memory access was encountered)
[08/02/2022-20:17:52] [TRT] [E] 4: [optimizer.cpp::computeCosts::3626] Error Code 4: Internal Error (Could not find any implementation for node [CONVOLUTION]-[acc_ops.conv3d]-[conv3d_1] due to insufficient workspace. See verbose log for requested sizes.)

If we increased workspace size, it still throws similar errors

[08/02/2022-20:20:22] [TRT] [W] The implicit batch dimension mode has been deprecated. Please create the network with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag whenever possible.
[08/02/2022-20:20:22] [TRT] [W] TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.3.2
[08/02/2022-20:20:22] [TRT] [W] GPU error during getBestTactic: [CONVOLUTION]-[acc_ops.conv3d]-[conv3d_1] : an illegal memory access was encountered
[08/02/2022-20:20:22] [TRT] [E] 1: [virtualMemoryBuffer.cpp::~StdVirtualMemoryBufferImpl::104] Error Code 1: Cuda Runtime (an illegal memory access was encountered)
[08/02/2022-20:20:22] [TRT] [E] 10: [optimizer.cpp::computeCosts::3628] Error Code 10: Internal Error (Could not find any implementation for node [CONVOLUTION]-[acc_ops.conv3d]-[conv3d_1].)
  1. it also bring issue to test_type_as.py dynamic test
[08/02/2022-19:27:24] [TRT] [E] 4: Output tensor output0 of type Int32 produced from output of incompatible type Float
[08/02/2022-19:27:24] [TRT] [E] 4: Output tensor output0 of type Int32 produced from output of incompatible type Float
[08/02/2022-19:27:25] [TRT] [E] 2: [castNode.cpp::checkSanity::17] Error Code 2: Internal Error (Assertion inputs[0]->extent.nbDims == outputs[0]->extent.nbDims failed. CastNode I/O must have same number of dimensions.)

Here is the system information

Torch-TensorRT Version: 1.2.0a0+0a58e9cc
Using PyTorch Version: 1.13.0.dev20220715+cu113
Using TensorRT Version: 8.4.1.5
PyTorch built with:
  - GCC 9.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  - CuDNN 8.4  (built against CUDA 11.6)
    - Built with CuDNN 8.3.2
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp b/tmp/changes.txt
index 5aeac3b..775c71d 100644
--- a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -225,11 +225,17 @@ core::CompileSpec CompileSpec::toInternalCompileSpec() {
  info.convert_info.engine_settings.num_avg_timing_iters = num_avg_timing_iters;
  TORCHTRT_CHECK(workspace_size >= 0, "workspace_size must be 0 or greater");
  info.convert_info.engine_settings.workspace_size = workspace_size;
-  TORCHTRT_CHECK(dla_sram_size >= 4096, "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
+  TORCHTRT_CHECK(
+      dla_sram_size >= 4096,
+      "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
  info.convert_info.engine_settings.dla_sram_size = dla_sram_size;
-  TORCHTRT_CHECK(dla_local_dram_size >= 4096, "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
+  TORCHTRT_CHECK(
+      dla_local_dram_size >= 4096,
+      "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
  info.convert_info.engine_settings.dla_local_dram_size = dla_local_dram_size;
-  TORCHTRT_CHECK(dla_global_dram_size >= 4096, "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
+  TORCHTRT_CHECK(
+      dla_global_dram_size >= 4096,
+      "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
  info.convert_info.engine_settings.dla_global_dram_size = dla_global_dram_size;
  return info;
}
diff --git a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp b/tmp/changes.txt
index 9165b21..ba2e168 100644
--- a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -65,7 +65,8 @@ void RegisterTRTCompileSpec() {
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, workspace_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_sram_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_local_dram_size);
-  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
+  ADD_FIELD_GET_SET_REGISTRATION(
+      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
  ADD_FIELD_GET_SET_REGISTRATION(
      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, truncate_long_and_double);
}
diff --git a/workspace/core/conversion/conversionctx/ConversionCtx.cpp b/tmp/changes.txt
index a24a159..71159eb 100644
--- a/workspace/core/conversion/conversionctx/ConversionCtx.cpp
+++ b/tmp/changes.txt
@@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
  }

  cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
-  if (settings.workspace_size != 0){
+  if (settings.workspace_size != 0) {
    cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
  }

@@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
        settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
        "DLA supports only fp16 or int8 precision");
    cfg->setDLACore(settings.device.dla_core);
-    if (settings.dla_sram_size != 1048576){
+    if (settings.dla_sram_size != 1048576) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
    }
-    if (settings.dla_local_dram_size != 1073741824){
+    if (settings.dla_local_dram_size != 1073741824) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
    }
-    if (settings.dla_global_dram_size != 536870912){
+    if (settings.dla_global_dram_size != 536870912) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
    }
  }
diff --git a/workspace/core/conversion/converters/converter_util.cpp b/tmp/changes.txt
index a6a2bbd..7452615 100644
--- a/workspace/core/conversion/converters/converter_util.cpp
+++ b/tmp/changes.txt
@@ -207,13 +207,13 @@ nvinfer1::ITensor* clamp(
    nvinfer1::ITensor* lower_bound,
    nvinfer1::ITensor* upper_bound,
    std::string const& name) {
-
  auto max_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMAX, x, lower_bound, "max layer for " + name);
  TORCHTRT_CHECK(max_layer, "Unable to create max layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp");
  auto min_itensor = min_layer->getOutput(0);
@@ -227,13 +227,13 @@ nvinfer1::ITensor* clamp_to_input_dim(
    nvinfer1::ITensor* input_dim,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
  auto one = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one);

-  auto upper_bound_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
+  auto upper_bound_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
  TORCHTRT_CHECK(upper_bound_layer, "Unable to create sub layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << upper_bound_layer->getName() << " for clamp to inputDim");
  auto upper_bound = upper_bound_layer->getOutput(0);
@@ -243,7 +243,8 @@ nvinfer1::ITensor* clamp_to_input_dim(
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp to inputDim");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min_layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp to inputDim");
  auto min_itensor = min_layer->getOutput(0);
@@ -257,7 +258,6 @@ nvinfer1::ITensor* normalize_indices(
    nvinfer1::ITensor* indices,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto neg = -torch::ones({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
@@ -307,17 +307,20 @@ nvinfer1::ITensor* get_slice_size(
  at::Tensor one_tensor = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one_tensor);

-  auto sub_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
+  auto sub_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
  TORCHTRT_CHECK(sub_layer, "Unable to create sub layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << sub_layer->getName() << " for calculate_output_size");
  auto sub_itensor = sub_layer->getOutput(0);

-  auto div_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
+  auto div_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
  TORCHTRT_CHECK(div_layer, "Unable to create div layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << div_layer->getName() << " for calculate_output_size");
  auto div_itensor = div_layer->getOutput(0);

-  auto add_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
+  auto add_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
  TORCHTRT_CHECK(add_layer, "Unable to create add layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << add_layer->getName() << " for calculate_output_size");
  auto size_itensor = add_layer->getOutput(0);
diff --git a/workspace/core/conversion/converters/impl/select.cpp b/tmp/changes.txt
index 3599ab9..d33f09a 100644
--- a/workspace/core/conversion/converters/impl/select.cpp
+++ b/tmp/changes.txt
@@ -103,121 +103,118 @@ nvinfer1::ITensor* roll(

auto select_registrations TORCHTRT_UNUSED =
    RegisterNodeConversionPatterns()
-        .pattern(
-            {"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensorOrFreeze(ctx);
-               auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
-               auto dim = args[1].unwrapToInt();
-               // Handle negative axis by refering to nbDims of input Tensor
-               dim = dim < 0 ? dim + maxDim : dim;
-               auto ind = (int32_t)args[2].unwrapToInt();
-               // Along the specified dimension, handle negative index by subtracting along length of dimension.
-               ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
-               LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
-               LOG_DEBUG("Dimension to select: " << dim);
-               LOG_DEBUG("Index: " << ind);
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
-               auto const_out = tensor_to_const(ctx, indices);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto out = gather_layer->getOutput(0);
+        .pattern({"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensorOrFreeze(ctx);
+                    auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
+                    auto dim = args[1].unwrapToInt();
+                    // Handle negative axis by refering to nbDims of input Tensor
+                    dim = dim < 0 ? dim + maxDim : dim;
+                    auto ind = (int32_t)args[2].unwrapToInt();
+                    // Along the specified dimension, handle negative index by subtracting along length of dimension.
+                    ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
+                    LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
+                    LOG_DEBUG("Dimension to select: " << dim);
+                    LOG_DEBUG("Index: " << ind);
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
+                    auto const_out = tensor_to_const(ctx, indices);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto out = gather_layer->getOutput(0);
+
+                    LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+
+                    if (out->getDimensions().nbDims != 1) {
+                      // IShuffleLayer removes redundant dimensions
+                      auto shuffle_layer = ctx->net->addShuffle(*out);
+                      TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                      shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
+                      shuffle_layer->setName(util::node_info(n).c_str());
+                      out = shuffle_layer->getOutput(0);
+                    }
+
+                    out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    auto start = (int32_t)args[2].unwrapToInt();
+                    auto length = (int32_t)args[3].unwrapToInt();

-               if (out->getDimensions().nbDims != 1) {
-                 // IShuffleLayer removes redundant dimensions
-                 auto shuffle_layer = ctx->net->addShuffle(*out);
-                 TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-                 shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
-                 shuffle_layer->setName(util::node_info(n).c_str());
-                 out = shuffle_layer->getOutput(0);
-               }
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);

-               out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               auto start = (int32_t)args[2].unwrapToInt();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);

-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
-               int32_t startIdx = start.item().to<int32_t>();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
+                    int32_t startIdx = start.item().to<int32_t>();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
+                    return true;
+                  }})
        .pattern(
            {"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -239,30 +236,29 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto shifts = args[1].unwrapToIntList().vec();
-               auto dims = args[2].unwrapToIntList().vec();
-
-               TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
-               if (ctx->input_is_dynamic) {
-                 TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
-               } else {
-                 auto in_shape = util::toVec(in->getDimensions());
-                 for (size_t i = 0; i < dims.size(); i++) {
-                   auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
-                   TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
-                   in = roll(ctx, in, shifts[i], dim, in_shape);
-                 }
-                 auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
-
-                 LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-                 return true;
-               }
-             }})
+        .pattern({"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto shifts = args[1].unwrapToIntList().vec();
+                    auto dims = args[2].unwrapToIntList().vec();
+
+                    TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
+                    if (ctx->input_is_dynamic) {
+                      TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
+                    } else {
+                      auto in_shape = util::toVec(in->getDimensions());
+                      for (size_t i = 0; i < dims.size(); i++) {
+                        auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
+                        TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
+                        in = roll(ctx, in, shifts[i], dim, in_shape);
+                      }
+                      auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
+
+                      LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                      return true;
+                    }
+                  }})
        .pattern(
            {"aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -319,7 +315,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int startIdx = 0;
               auto startIdxIVal = args[2].IValue();
               if (!startIdxIVal->isNone()) {
-                 startIdx = startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
+                 startIdx =
+                     startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
                 startIdx = maxDim == -1 ? startIdx : std::min(startIdx, maxDim);
               }
               // Handle case when given tensor index is negative
@@ -331,7 +328,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int endIdx = maxDim; // -1 for dynamic shape
               auto endIdxIVal = args[3].IValue();
               if (!endIdxIVal->isNone()) {
-                 int truncate_value = endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
+                 int truncate_value =
+                     endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
                 endIdx = maxDim == -1 ? truncate_value : std::min(truncate_value, maxDim);
               }
               if (maxDim > 0) {
@@ -385,7 +383,8 @@ auto select_registrations TORCHTRT_UNUSED =
                 // update start and end
                 nvinfer1::ITensor* out_start;
                 nvinfer1::ITensor* out_end;
-                 auto start_end = normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
+                 auto start_end =
+                     normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
                 out_start = start_end[0];
                 out_end = start_end[1];

@@ -397,7 +396,7 @@ auto select_registrations TORCHTRT_UNUSED =
                 slice_layer->setInput(2, *size_itensor); // size, must be set if input is dynamic
               }
               auto slice_out = slice_layer->getOutput(0);
-               
+
               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], slice_out);
               LOG_DEBUG("Slice layer output shape: " << out->getDimensions());

diff --git a/workspace/core/lowering/register_trt_placeholder_ops.cpp b/tmp/changes.txt
index 5ba8171..17d7d3f 100644
--- a/workspace/core/lowering/register_trt_placeholder_ops.cpp
+++ b/tmp/changes.txt
@@ -10,7 +10,10 @@ c10::AliasAnalysisKind aliasAnalysisFromSchema() {
RegisterOperators trt_placeholder_ops_reg({
    /// Op marks a Tensor to be conveted from an Torch Tensor
    /// to a TRT constant Tensor
-    Operator("trt::const(Tensor val) -> Tensor", [](Stack& stack) { /*noop*/ }, aliasAnalysisFromSchema()),
+    Operator(
+        "trt::const(Tensor val) -> Tensor",
+        [](Stack& stack) { /*noop*/ },
+        aliasAnalysisFromSchema()),
});

} // namespace jit
diff --git a/workspace/core/partitioning/partitioning.cpp b/tmp/changes.txt
index 8fcd29f..8d54b51 100644
--- a/workspace/core/partitioning/partitioning.cpp
+++ b/tmp/changes.txt
@@ -124,7 +124,8 @@ void find_all_fallback_nodes(
      if (!isTensor(output)) {
        for (auto use : output->uses()) {
          auto node = use.user;
-          if (node->kind() != torch::jit::prim::Constant && global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
+          if (node->kind() != torch::jit::prim::Constant &&
+              global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
            q.push(node);
          }
        }
diff --git a/workspace/core/conversion/converters/converter_util.h b/tmp/changes.txt
index cdf2ee5..b155499 100644
--- a/workspace/core/conversion/converters/converter_util.h
+++ b/tmp/changes.txt
@@ -1,8 +1,8 @@
#pragma once

+#include <limits>
#include <map>
#include <string>
-#include <limits>

#include "core/conversion/conversionctx/ConversionCtx.h"
#include "core/conversion/converters/Weights.h"
diff --git a/workspace/tests/core/conversion/converters/test_cast.cpp b/tmp/changes.txt
index 092cdb3..d26c7a0 100644
--- a/workspace/tests/core/conversion/converters/test_cast.cpp
+++ b/tmp/changes.txt
@@ -135,7 +135,6 @@ TEST(Converters, ATenBoolToINT32TensorConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenToSingleConvertsCorrectly) {
  const auto graph = R"IR(
    graph(%y.1 : Tensor):
@@ -164,7 +163,6 @@ TEST(Converters, ATenToSingleConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenTypeAsConvertsCorrectly) {
  const auto graph = R"IR(
      graph(%0 : Tensor,
diff --git a/workspace/cpp/bin/torchtrtc/main.cpp b/tmp/changes.txt
index 6c207d7..51ec2c5 100644
--- a/workspace/cpp/bin/torchtrtc/main.cpp
+++ b/tmp/changes.txt
@@ -117,8 +117,7 @@ int main(int argc, char** argv) {
      parser, "num_iters", "Number of averaging timing iterations used to select kernels", {"num-avg-timing-iters"});
  args::ValueFlag<uint64_t> workspace_size(
      parser, "workspace_size", "Maximum size of workspace given to TensorRT", {"workspace-size"});
-  args::ValueFlag<uint64_t> dla_sram_size(
-      parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
+  args::ValueFlag<uint64_t> dla_sram_size(parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
  args::ValueFlag<uint64_t> dla_local_dram_size(
      parser, "dla_local_dram_size", "DLA Local DRAM size", {"dla-local-dram-size"});
  args::ValueFlag<uint64_t> dla_global_dram_size(
ERROR: Some files do not conform to style guidelines

@frank-wei frank-wei changed the title Update test_convolution.py [FX] disable 2 of conv3d and type_as tests Aug 2, 2022
@frank-wei frank-wei marked this pull request as ready for review August 2, 2022 20:52
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp b/tmp/changes.txt
index 5aeac3b..775c71d 100644
--- a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -225,11 +225,17 @@ core::CompileSpec CompileSpec::toInternalCompileSpec() {
  info.convert_info.engine_settings.num_avg_timing_iters = num_avg_timing_iters;
  TORCHTRT_CHECK(workspace_size >= 0, "workspace_size must be 0 or greater");
  info.convert_info.engine_settings.workspace_size = workspace_size;
-  TORCHTRT_CHECK(dla_sram_size >= 4096, "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
+  TORCHTRT_CHECK(
+      dla_sram_size >= 4096,
+      "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
  info.convert_info.engine_settings.dla_sram_size = dla_sram_size;
-  TORCHTRT_CHECK(dla_local_dram_size >= 4096, "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
+  TORCHTRT_CHECK(
+      dla_local_dram_size >= 4096,
+      "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
  info.convert_info.engine_settings.dla_local_dram_size = dla_local_dram_size;
-  TORCHTRT_CHECK(dla_global_dram_size >= 4096, "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
+  TORCHTRT_CHECK(
+      dla_global_dram_size >= 4096,
+      "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
  info.convert_info.engine_settings.dla_global_dram_size = dla_global_dram_size;
  return info;
}
diff --git a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp b/tmp/changes.txt
index 9165b21..ba2e168 100644
--- a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -65,7 +65,8 @@ void RegisterTRTCompileSpec() {
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, workspace_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_sram_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_local_dram_size);
-  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
+  ADD_FIELD_GET_SET_REGISTRATION(
+      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
  ADD_FIELD_GET_SET_REGISTRATION(
      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, truncate_long_and_double);
}
diff --git a/workspace/core/conversion/conversionctx/ConversionCtx.cpp b/tmp/changes.txt
index a24a159..71159eb 100644
--- a/workspace/core/conversion/conversionctx/ConversionCtx.cpp
+++ b/tmp/changes.txt
@@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
  }

  cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
-  if (settings.workspace_size != 0){
+  if (settings.workspace_size != 0) {
    cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
  }

@@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
        settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
        "DLA supports only fp16 or int8 precision");
    cfg->setDLACore(settings.device.dla_core);
-    if (settings.dla_sram_size != 1048576){
+    if (settings.dla_sram_size != 1048576) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
    }
-    if (settings.dla_local_dram_size != 1073741824){
+    if (settings.dla_local_dram_size != 1073741824) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
    }
-    if (settings.dla_global_dram_size != 536870912){
+    if (settings.dla_global_dram_size != 536870912) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
    }
  }
diff --git a/workspace/core/conversion/converters/converter_util.cpp b/tmp/changes.txt
index a6a2bbd..7452615 100644
--- a/workspace/core/conversion/converters/converter_util.cpp
+++ b/tmp/changes.txt
@@ -207,13 +207,13 @@ nvinfer1::ITensor* clamp(
    nvinfer1::ITensor* lower_bound,
    nvinfer1::ITensor* upper_bound,
    std::string const& name) {
-
  auto max_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMAX, x, lower_bound, "max layer for " + name);
  TORCHTRT_CHECK(max_layer, "Unable to create max layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp");
  auto min_itensor = min_layer->getOutput(0);
@@ -227,13 +227,13 @@ nvinfer1::ITensor* clamp_to_input_dim(
    nvinfer1::ITensor* input_dim,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
  auto one = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one);

-  auto upper_bound_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
+  auto upper_bound_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
  TORCHTRT_CHECK(upper_bound_layer, "Unable to create sub layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << upper_bound_layer->getName() << " for clamp to inputDim");
  auto upper_bound = upper_bound_layer->getOutput(0);
@@ -243,7 +243,8 @@ nvinfer1::ITensor* clamp_to_input_dim(
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp to inputDim");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min_layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp to inputDim");
  auto min_itensor = min_layer->getOutput(0);
@@ -257,7 +258,6 @@ nvinfer1::ITensor* normalize_indices(
    nvinfer1::ITensor* indices,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto neg = -torch::ones({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
@@ -307,17 +307,20 @@ nvinfer1::ITensor* get_slice_size(
  at::Tensor one_tensor = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one_tensor);

-  auto sub_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
+  auto sub_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
  TORCHTRT_CHECK(sub_layer, "Unable to create sub layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << sub_layer->getName() << " for calculate_output_size");
  auto sub_itensor = sub_layer->getOutput(0);

-  auto div_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
+  auto div_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
  TORCHTRT_CHECK(div_layer, "Unable to create div layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << div_layer->getName() << " for calculate_output_size");
  auto div_itensor = div_layer->getOutput(0);

-  auto add_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
+  auto add_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
  TORCHTRT_CHECK(add_layer, "Unable to create add layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << add_layer->getName() << " for calculate_output_size");
  auto size_itensor = add_layer->getOutput(0);
diff --git a/workspace/core/conversion/converters/impl/select.cpp b/tmp/changes.txt
index 3599ab9..d33f09a 100644
--- a/workspace/core/conversion/converters/impl/select.cpp
+++ b/tmp/changes.txt
@@ -103,121 +103,118 @@ nvinfer1::ITensor* roll(

auto select_registrations TORCHTRT_UNUSED =
    RegisterNodeConversionPatterns()
-        .pattern(
-            {"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensorOrFreeze(ctx);
-               auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
-               auto dim = args[1].unwrapToInt();
-               // Handle negative axis by refering to nbDims of input Tensor
-               dim = dim < 0 ? dim + maxDim : dim;
-               auto ind = (int32_t)args[2].unwrapToInt();
-               // Along the specified dimension, handle negative index by subtracting along length of dimension.
-               ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
-               LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
-               LOG_DEBUG("Dimension to select: " << dim);
-               LOG_DEBUG("Index: " << ind);
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
-               auto const_out = tensor_to_const(ctx, indices);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto out = gather_layer->getOutput(0);
+        .pattern({"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensorOrFreeze(ctx);
+                    auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
+                    auto dim = args[1].unwrapToInt();
+                    // Handle negative axis by refering to nbDims of input Tensor
+                    dim = dim < 0 ? dim + maxDim : dim;
+                    auto ind = (int32_t)args[2].unwrapToInt();
+                    // Along the specified dimension, handle negative index by subtracting along length of dimension.
+                    ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
+                    LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
+                    LOG_DEBUG("Dimension to select: " << dim);
+                    LOG_DEBUG("Index: " << ind);
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
+                    auto const_out = tensor_to_const(ctx, indices);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto out = gather_layer->getOutput(0);
+
+                    LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+
+                    if (out->getDimensions().nbDims != 1) {
+                      // IShuffleLayer removes redundant dimensions
+                      auto shuffle_layer = ctx->net->addShuffle(*out);
+                      TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                      shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
+                      shuffle_layer->setName(util::node_info(n).c_str());
+                      out = shuffle_layer->getOutput(0);
+                    }
+
+                    out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    auto start = (int32_t)args[2].unwrapToInt();
+                    auto length = (int32_t)args[3].unwrapToInt();

-               if (out->getDimensions().nbDims != 1) {
-                 // IShuffleLayer removes redundant dimensions
-                 auto shuffle_layer = ctx->net->addShuffle(*out);
-                 TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-                 shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
-                 shuffle_layer->setName(util::node_info(n).c_str());
-                 out = shuffle_layer->getOutput(0);
-               }
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);

-               out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               auto start = (int32_t)args[2].unwrapToInt();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);

-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
-               int32_t startIdx = start.item().to<int32_t>();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
+                    int32_t startIdx = start.item().to<int32_t>();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
+                    return true;
+                  }})
        .pattern(
            {"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -239,30 +236,29 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto shifts = args[1].unwrapToIntList().vec();
-               auto dims = args[2].unwrapToIntList().vec();
-
-               TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
-               if (ctx->input_is_dynamic) {
-                 TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
-               } else {
-                 auto in_shape = util::toVec(in->getDimensions());
-                 for (size_t i = 0; i < dims.size(); i++) {
-                   auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
-                   TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
-                   in = roll(ctx, in, shifts[i], dim, in_shape);
-                 }
-                 auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
-
-                 LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-                 return true;
-               }
-             }})
+        .pattern({"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto shifts = args[1].unwrapToIntList().vec();
+                    auto dims = args[2].unwrapToIntList().vec();
+
+                    TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
+                    if (ctx->input_is_dynamic) {
+                      TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
+                    } else {
+                      auto in_shape = util::toVec(in->getDimensions());
+                      for (size_t i = 0; i < dims.size(); i++) {
+                        auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
+                        TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
+                        in = roll(ctx, in, shifts[i], dim, in_shape);
+                      }
+                      auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
+
+                      LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                      return true;
+                    }
+                  }})
        .pattern(
            {"aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -319,7 +315,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int startIdx = 0;
               auto startIdxIVal = args[2].IValue();
               if (!startIdxIVal->isNone()) {
-                 startIdx = startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
+                 startIdx =
+                     startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
                 startIdx = maxDim == -1 ? startIdx : std::min(startIdx, maxDim);
               }
               // Handle case when given tensor index is negative
@@ -331,7 +328,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int endIdx = maxDim; // -1 for dynamic shape
               auto endIdxIVal = args[3].IValue();
               if (!endIdxIVal->isNone()) {
-                 int truncate_value = endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
+                 int truncate_value =
+                     endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
                 endIdx = maxDim == -1 ? truncate_value : std::min(truncate_value, maxDim);
               }
               if (maxDim > 0) {
@@ -385,7 +383,8 @@ auto select_registrations TORCHTRT_UNUSED =
                 // update start and end
                 nvinfer1::ITensor* out_start;
                 nvinfer1::ITensor* out_end;
-                 auto start_end = normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
+                 auto start_end =
+                     normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
                 out_start = start_end[0];
                 out_end = start_end[1];

@@ -397,7 +396,7 @@ auto select_registrations TORCHTRT_UNUSED =
                 slice_layer->setInput(2, *size_itensor); // size, must be set if input is dynamic
               }
               auto slice_out = slice_layer->getOutput(0);
-               
+
               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], slice_out);
               LOG_DEBUG("Slice layer output shape: " << out->getDimensions());

diff --git a/workspace/core/lowering/register_trt_placeholder_ops.cpp b/tmp/changes.txt
index 5ba8171..17d7d3f 100644
--- a/workspace/core/lowering/register_trt_placeholder_ops.cpp
+++ b/tmp/changes.txt
@@ -10,7 +10,10 @@ c10::AliasAnalysisKind aliasAnalysisFromSchema() {
RegisterOperators trt_placeholder_ops_reg({
    /// Op marks a Tensor to be conveted from an Torch Tensor
    /// to a TRT constant Tensor
-    Operator("trt::const(Tensor val) -> Tensor", [](Stack& stack) { /*noop*/ }, aliasAnalysisFromSchema()),
+    Operator(
+        "trt::const(Tensor val) -> Tensor",
+        [](Stack& stack) { /*noop*/ },
+        aliasAnalysisFromSchema()),
});

} // namespace jit
diff --git a/workspace/core/partitioning/partitioning.cpp b/tmp/changes.txt
index 8fcd29f..8d54b51 100644
--- a/workspace/core/partitioning/partitioning.cpp
+++ b/tmp/changes.txt
@@ -124,7 +124,8 @@ void find_all_fallback_nodes(
      if (!isTensor(output)) {
        for (auto use : output->uses()) {
          auto node = use.user;
-          if (node->kind() != torch::jit::prim::Constant && global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
+          if (node->kind() != torch::jit::prim::Constant &&
+              global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
            q.push(node);
          }
        }
diff --git a/workspace/core/conversion/converters/converter_util.h b/tmp/changes.txt
index cdf2ee5..b155499 100644
--- a/workspace/core/conversion/converters/converter_util.h
+++ b/tmp/changes.txt
@@ -1,8 +1,8 @@
#pragma once

+#include <limits>
#include <map>
#include <string>
-#include <limits>

#include "core/conversion/conversionctx/ConversionCtx.h"
#include "core/conversion/converters/Weights.h"
diff --git a/workspace/tests/core/conversion/converters/test_cast.cpp b/tmp/changes.txt
index 092cdb3..d26c7a0 100644
--- a/workspace/tests/core/conversion/converters/test_cast.cpp
+++ b/tmp/changes.txt
@@ -135,7 +135,6 @@ TEST(Converters, ATenBoolToINT32TensorConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenToSingleConvertsCorrectly) {
  const auto graph = R"IR(
    graph(%y.1 : Tensor):
@@ -164,7 +163,6 @@ TEST(Converters, ATenToSingleConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenTypeAsConvertsCorrectly) {
  const auto graph = R"IR(
      graph(%0 : Tensor,
diff --git a/workspace/cpp/bin/torchtrtc/main.cpp b/tmp/changes.txt
index 6c207d7..51ec2c5 100644
--- a/workspace/cpp/bin/torchtrtc/main.cpp
+++ b/tmp/changes.txt
@@ -117,8 +117,7 @@ int main(int argc, char** argv) {
      parser, "num_iters", "Number of averaging timing iterations used to select kernels", {"num-avg-timing-iters"});
  args::ValueFlag<uint64_t> workspace_size(
      parser, "workspace_size", "Maximum size of workspace given to TensorRT", {"workspace-size"});
-  args::ValueFlag<uint64_t> dla_sram_size(
-      parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
+  args::ValueFlag<uint64_t> dla_sram_size(parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
  args::ValueFlag<uint64_t> dla_local_dram_size(
      parser, "dla_local_dram_size", "DLA Local DRAM size", {"dla-local-dram-size"});
  args::ValueFlag<uint64_t> dla_global_dram_size(
ERROR: Some files do not conform to style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp b/tmp/changes.txt
index 5aeac3b..775c71d 100644
--- a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -225,11 +225,17 @@ core::CompileSpec CompileSpec::toInternalCompileSpec() {
  info.convert_info.engine_settings.num_avg_timing_iters = num_avg_timing_iters;
  TORCHTRT_CHECK(workspace_size >= 0, "workspace_size must be 0 or greater");
  info.convert_info.engine_settings.workspace_size = workspace_size;
-  TORCHTRT_CHECK(dla_sram_size >= 4096, "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
+  TORCHTRT_CHECK(
+      dla_sram_size >= 4096,
+      "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
  info.convert_info.engine_settings.dla_sram_size = dla_sram_size;
-  TORCHTRT_CHECK(dla_local_dram_size >= 4096, "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
+  TORCHTRT_CHECK(
+      dla_local_dram_size >= 4096,
+      "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
  info.convert_info.engine_settings.dla_local_dram_size = dla_local_dram_size;
-  TORCHTRT_CHECK(dla_global_dram_size >= 4096, "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
+  TORCHTRT_CHECK(
+      dla_global_dram_size >= 4096,
+      "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
  info.convert_info.engine_settings.dla_global_dram_size = dla_global_dram_size;
  return info;
}
diff --git a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp b/tmp/changes.txt
index 9165b21..ba2e168 100644
--- a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -65,7 +65,8 @@ void RegisterTRTCompileSpec() {
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, workspace_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_sram_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_local_dram_size);
-  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
+  ADD_FIELD_GET_SET_REGISTRATION(
+      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
  ADD_FIELD_GET_SET_REGISTRATION(
      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, truncate_long_and_double);
}
diff --git a/workspace/core/conversion/conversionctx/ConversionCtx.cpp b/tmp/changes.txt
index a24a159..71159eb 100644
--- a/workspace/core/conversion/conversionctx/ConversionCtx.cpp
+++ b/tmp/changes.txt
@@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
  }

  cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
-  if (settings.workspace_size != 0){
+  if (settings.workspace_size != 0) {
    cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
  }

@@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
        settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
        "DLA supports only fp16 or int8 precision");
    cfg->setDLACore(settings.device.dla_core);
-    if (settings.dla_sram_size != 1048576){
+    if (settings.dla_sram_size != 1048576) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
    }
-    if (settings.dla_local_dram_size != 1073741824){
+    if (settings.dla_local_dram_size != 1073741824) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
    }
-    if (settings.dla_global_dram_size != 536870912){
+    if (settings.dla_global_dram_size != 536870912) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
    }
  }
diff --git a/workspace/core/conversion/converters/converter_util.cpp b/tmp/changes.txt
index a6a2bbd..7452615 100644
--- a/workspace/core/conversion/converters/converter_util.cpp
+++ b/tmp/changes.txt
@@ -207,13 +207,13 @@ nvinfer1::ITensor* clamp(
    nvinfer1::ITensor* lower_bound,
    nvinfer1::ITensor* upper_bound,
    std::string const& name) {
-
  auto max_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMAX, x, lower_bound, "max layer for " + name);
  TORCHTRT_CHECK(max_layer, "Unable to create max layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp");
  auto min_itensor = min_layer->getOutput(0);
@@ -227,13 +227,13 @@ nvinfer1::ITensor* clamp_to_input_dim(
    nvinfer1::ITensor* input_dim,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
  auto one = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one);

-  auto upper_bound_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
+  auto upper_bound_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
  TORCHTRT_CHECK(upper_bound_layer, "Unable to create sub layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << upper_bound_layer->getName() << " for clamp to inputDim");
  auto upper_bound = upper_bound_layer->getOutput(0);
@@ -243,7 +243,8 @@ nvinfer1::ITensor* clamp_to_input_dim(
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp to inputDim");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min_layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp to inputDim");
  auto min_itensor = min_layer->getOutput(0);
@@ -257,7 +258,6 @@ nvinfer1::ITensor* normalize_indices(
    nvinfer1::ITensor* indices,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto neg = -torch::ones({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
@@ -307,17 +307,20 @@ nvinfer1::ITensor* get_slice_size(
  at::Tensor one_tensor = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one_tensor);

-  auto sub_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
+  auto sub_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
  TORCHTRT_CHECK(sub_layer, "Unable to create sub layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << sub_layer->getName() << " for calculate_output_size");
  auto sub_itensor = sub_layer->getOutput(0);

-  auto div_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
+  auto div_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
  TORCHTRT_CHECK(div_layer, "Unable to create div layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << div_layer->getName() << " for calculate_output_size");
  auto div_itensor = div_layer->getOutput(0);

-  auto add_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
+  auto add_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
  TORCHTRT_CHECK(add_layer, "Unable to create add layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << add_layer->getName() << " for calculate_output_size");
  auto size_itensor = add_layer->getOutput(0);
diff --git a/workspace/core/conversion/converters/impl/select.cpp b/tmp/changes.txt
index 3599ab9..d33f09a 100644
--- a/workspace/core/conversion/converters/impl/select.cpp
+++ b/tmp/changes.txt
@@ -103,121 +103,118 @@ nvinfer1::ITensor* roll(

auto select_registrations TORCHTRT_UNUSED =
    RegisterNodeConversionPatterns()
-        .pattern(
-            {"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensorOrFreeze(ctx);
-               auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
-               auto dim = args[1].unwrapToInt();
-               // Handle negative axis by refering to nbDims of input Tensor
-               dim = dim < 0 ? dim + maxDim : dim;
-               auto ind = (int32_t)args[2].unwrapToInt();
-               // Along the specified dimension, handle negative index by subtracting along length of dimension.
-               ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
-               LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
-               LOG_DEBUG("Dimension to select: " << dim);
-               LOG_DEBUG("Index: " << ind);
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
-               auto const_out = tensor_to_const(ctx, indices);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto out = gather_layer->getOutput(0);
+        .pattern({"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensorOrFreeze(ctx);
+                    auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
+                    auto dim = args[1].unwrapToInt();
+                    // Handle negative axis by refering to nbDims of input Tensor
+                    dim = dim < 0 ? dim + maxDim : dim;
+                    auto ind = (int32_t)args[2].unwrapToInt();
+                    // Along the specified dimension, handle negative index by subtracting along length of dimension.
+                    ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
+                    LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
+                    LOG_DEBUG("Dimension to select: " << dim);
+                    LOG_DEBUG("Index: " << ind);
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
+                    auto const_out = tensor_to_const(ctx, indices);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto out = gather_layer->getOutput(0);
+
+                    LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+
+                    if (out->getDimensions().nbDims != 1) {
+                      // IShuffleLayer removes redundant dimensions
+                      auto shuffle_layer = ctx->net->addShuffle(*out);
+                      TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                      shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
+                      shuffle_layer->setName(util::node_info(n).c_str());
+                      out = shuffle_layer->getOutput(0);
+                    }
+
+                    out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    auto start = (int32_t)args[2].unwrapToInt();
+                    auto length = (int32_t)args[3].unwrapToInt();

-               if (out->getDimensions().nbDims != 1) {
-                 // IShuffleLayer removes redundant dimensions
-                 auto shuffle_layer = ctx->net->addShuffle(*out);
-                 TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-                 shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
-                 shuffle_layer->setName(util::node_info(n).c_str());
-                 out = shuffle_layer->getOutput(0);
-               }
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);

-               out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               auto start = (int32_t)args[2].unwrapToInt();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);

-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
-               int32_t startIdx = start.item().to<int32_t>();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
+                    int32_t startIdx = start.item().to<int32_t>();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
+                    return true;
+                  }})
        .pattern(
            {"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -239,30 +236,29 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto shifts = args[1].unwrapToIntList().vec();
-               auto dims = args[2].unwrapToIntList().vec();
-
-               TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
-               if (ctx->input_is_dynamic) {
-                 TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
-               } else {
-                 auto in_shape = util::toVec(in->getDimensions());
-                 for (size_t i = 0; i < dims.size(); i++) {
-                   auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
-                   TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
-                   in = roll(ctx, in, shifts[i], dim, in_shape);
-                 }
-                 auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
-
-                 LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-                 return true;
-               }
-             }})
+        .pattern({"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto shifts = args[1].unwrapToIntList().vec();
+                    auto dims = args[2].unwrapToIntList().vec();
+
+                    TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
+                    if (ctx->input_is_dynamic) {
+                      TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
+                    } else {
+                      auto in_shape = util::toVec(in->getDimensions());
+                      for (size_t i = 0; i < dims.size(); i++) {
+                        auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
+                        TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
+                        in = roll(ctx, in, shifts[i], dim, in_shape);
+                      }
+                      auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
+
+                      LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                      return true;
+                    }
+                  }})
        .pattern(
            {"aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -319,7 +315,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int startIdx = 0;
               auto startIdxIVal = args[2].IValue();
               if (!startIdxIVal->isNone()) {
-                 startIdx = startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
+                 startIdx =
+                     startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
                 startIdx = maxDim == -1 ? startIdx : std::min(startIdx, maxDim);
               }
               // Handle case when given tensor index is negative
@@ -331,7 +328,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int endIdx = maxDim; // -1 for dynamic shape
               auto endIdxIVal = args[3].IValue();
               if (!endIdxIVal->isNone()) {
-                 int truncate_value = endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
+                 int truncate_value =
+                     endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
                 endIdx = maxDim == -1 ? truncate_value : std::min(truncate_value, maxDim);
               }
               if (maxDim > 0) {
@@ -385,7 +383,8 @@ auto select_registrations TORCHTRT_UNUSED =
                 // update start and end
                 nvinfer1::ITensor* out_start;
                 nvinfer1::ITensor* out_end;
-                 auto start_end = normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
+                 auto start_end =
+                     normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
                 out_start = start_end[0];
                 out_end = start_end[1];

@@ -397,7 +396,7 @@ auto select_registrations TORCHTRT_UNUSED =
                 slice_layer->setInput(2, *size_itensor); // size, must be set if input is dynamic
               }
               auto slice_out = slice_layer->getOutput(0);
-               
+
               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], slice_out);
               LOG_DEBUG("Slice layer output shape: " << out->getDimensions());

diff --git a/workspace/core/lowering/register_trt_placeholder_ops.cpp b/tmp/changes.txt
index 5ba8171..17d7d3f 100644
--- a/workspace/core/lowering/register_trt_placeholder_ops.cpp
+++ b/tmp/changes.txt
@@ -10,7 +10,10 @@ c10::AliasAnalysisKind aliasAnalysisFromSchema() {
RegisterOperators trt_placeholder_ops_reg({
    /// Op marks a Tensor to be conveted from an Torch Tensor
    /// to a TRT constant Tensor
-    Operator("trt::const(Tensor val) -> Tensor", [](Stack& stack) { /*noop*/ }, aliasAnalysisFromSchema()),
+    Operator(
+        "trt::const(Tensor val) -> Tensor",
+        [](Stack& stack) { /*noop*/ },
+        aliasAnalysisFromSchema()),
});

} // namespace jit
diff --git a/workspace/core/partitioning/partitioning.cpp b/tmp/changes.txt
index 8fcd29f..8d54b51 100644
--- a/workspace/core/partitioning/partitioning.cpp
+++ b/tmp/changes.txt
@@ -124,7 +124,8 @@ void find_all_fallback_nodes(
      if (!isTensor(output)) {
        for (auto use : output->uses()) {
          auto node = use.user;
-          if (node->kind() != torch::jit::prim::Constant && global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
+          if (node->kind() != torch::jit::prim::Constant &&
+              global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
            q.push(node);
          }
        }
diff --git a/workspace/core/conversion/converters/converter_util.h b/tmp/changes.txt
index cdf2ee5..b155499 100644
--- a/workspace/core/conversion/converters/converter_util.h
+++ b/tmp/changes.txt
@@ -1,8 +1,8 @@
#pragma once

+#include <limits>
#include <map>
#include <string>
-#include <limits>

#include "core/conversion/conversionctx/ConversionCtx.h"
#include "core/conversion/converters/Weights.h"
diff --git a/workspace/tests/core/conversion/converters/test_cast.cpp b/tmp/changes.txt
index 092cdb3..d26c7a0 100644
--- a/workspace/tests/core/conversion/converters/test_cast.cpp
+++ b/tmp/changes.txt
@@ -135,7 +135,6 @@ TEST(Converters, ATenBoolToINT32TensorConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenToSingleConvertsCorrectly) {
  const auto graph = R"IR(
    graph(%y.1 : Tensor):
@@ -164,7 +163,6 @@ TEST(Converters, ATenToSingleConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenTypeAsConvertsCorrectly) {
  const auto graph = R"IR(
      graph(%0 : Tensor,
diff --git a/workspace/cpp/bin/torchtrtc/main.cpp b/tmp/changes.txt
index 6c207d7..51ec2c5 100644
--- a/workspace/cpp/bin/torchtrtc/main.cpp
+++ b/tmp/changes.txt
@@ -117,8 +117,7 @@ int main(int argc, char** argv) {
      parser, "num_iters", "Number of averaging timing iterations used to select kernels", {"num-avg-timing-iters"});
  args::ValueFlag<uint64_t> workspace_size(
      parser, "workspace_size", "Maximum size of workspace given to TensorRT", {"workspace-size"});
-  args::ValueFlag<uint64_t> dla_sram_size(
-      parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
+  args::ValueFlag<uint64_t> dla_sram_size(parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
  args::ValueFlag<uint64_t> dla_local_dram_size(
      parser, "dla_local_dram_size", "DLA Local DRAM size", {"dla-local-dram-size"});
  args::ValueFlag<uint64_t> dla_global_dram_size(
ERROR: Some files do not conform to style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp b/tmp/changes.txt
index 5aeac3b..775c71d 100644
--- a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -225,11 +225,17 @@ core::CompileSpec CompileSpec::toInternalCompileSpec() {
  info.convert_info.engine_settings.num_avg_timing_iters = num_avg_timing_iters;
  TORCHTRT_CHECK(workspace_size >= 0, "workspace_size must be 0 or greater");
  info.convert_info.engine_settings.workspace_size = workspace_size;
-  TORCHTRT_CHECK(dla_sram_size >= 4096, "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
+  TORCHTRT_CHECK(
+      dla_sram_size >= 4096,
+      "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
  info.convert_info.engine_settings.dla_sram_size = dla_sram_size;
-  TORCHTRT_CHECK(dla_local_dram_size >= 4096, "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
+  TORCHTRT_CHECK(
+      dla_local_dram_size >= 4096,
+      "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
  info.convert_info.engine_settings.dla_local_dram_size = dla_local_dram_size;
-  TORCHTRT_CHECK(dla_global_dram_size >= 4096, "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
+  TORCHTRT_CHECK(
+      dla_global_dram_size >= 4096,
+      "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
  info.convert_info.engine_settings.dla_global_dram_size = dla_global_dram_size;
  return info;
}
diff --git a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp b/tmp/changes.txt
index 9165b21..ba2e168 100644
--- a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -65,7 +65,8 @@ void RegisterTRTCompileSpec() {
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, workspace_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_sram_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_local_dram_size);
-  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
+  ADD_FIELD_GET_SET_REGISTRATION(
+      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
  ADD_FIELD_GET_SET_REGISTRATION(
      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, truncate_long_and_double);
}
diff --git a/workspace/core/conversion/conversionctx/ConversionCtx.cpp b/tmp/changes.txt
index a24a159..71159eb 100644
--- a/workspace/core/conversion/conversionctx/ConversionCtx.cpp
+++ b/tmp/changes.txt
@@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
  }

  cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
-  if (settings.workspace_size != 0){
+  if (settings.workspace_size != 0) {
    cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
  }

@@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
        settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
        "DLA supports only fp16 or int8 precision");
    cfg->setDLACore(settings.device.dla_core);
-    if (settings.dla_sram_size != 1048576){
+    if (settings.dla_sram_size != 1048576) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
    }
-    if (settings.dla_local_dram_size != 1073741824){
+    if (settings.dla_local_dram_size != 1073741824) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
    }
-    if (settings.dla_global_dram_size != 536870912){
+    if (settings.dla_global_dram_size != 536870912) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
    }
  }
diff --git a/workspace/core/conversion/converters/converter_util.cpp b/tmp/changes.txt
index a6a2bbd..7452615 100644
--- a/workspace/core/conversion/converters/converter_util.cpp
+++ b/tmp/changes.txt
@@ -207,13 +207,13 @@ nvinfer1::ITensor* clamp(
    nvinfer1::ITensor* lower_bound,
    nvinfer1::ITensor* upper_bound,
    std::string const& name) {
-
  auto max_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMAX, x, lower_bound, "max layer for " + name);
  TORCHTRT_CHECK(max_layer, "Unable to create max layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp");
  auto min_itensor = min_layer->getOutput(0);
@@ -227,13 +227,13 @@ nvinfer1::ITensor* clamp_to_input_dim(
    nvinfer1::ITensor* input_dim,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
  auto one = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one);

-  auto upper_bound_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
+  auto upper_bound_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
  TORCHTRT_CHECK(upper_bound_layer, "Unable to create sub layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << upper_bound_layer->getName() << " for clamp to inputDim");
  auto upper_bound = upper_bound_layer->getOutput(0);
@@ -243,7 +243,8 @@ nvinfer1::ITensor* clamp_to_input_dim(
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp to inputDim");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min_layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp to inputDim");
  auto min_itensor = min_layer->getOutput(0);
@@ -257,7 +258,6 @@ nvinfer1::ITensor* normalize_indices(
    nvinfer1::ITensor* indices,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto neg = -torch::ones({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
@@ -307,17 +307,20 @@ nvinfer1::ITensor* get_slice_size(
  at::Tensor one_tensor = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one_tensor);

-  auto sub_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
+  auto sub_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
  TORCHTRT_CHECK(sub_layer, "Unable to create sub layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << sub_layer->getName() << " for calculate_output_size");
  auto sub_itensor = sub_layer->getOutput(0);

-  auto div_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
+  auto div_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
  TORCHTRT_CHECK(div_layer, "Unable to create div layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << div_layer->getName() << " for calculate_output_size");
  auto div_itensor = div_layer->getOutput(0);

-  auto add_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
+  auto add_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
  TORCHTRT_CHECK(add_layer, "Unable to create add layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << add_layer->getName() << " for calculate_output_size");
  auto size_itensor = add_layer->getOutput(0);
diff --git a/workspace/core/conversion/converters/impl/select.cpp b/tmp/changes.txt
index 3599ab9..d33f09a 100644
--- a/workspace/core/conversion/converters/impl/select.cpp
+++ b/tmp/changes.txt
@@ -103,121 +103,118 @@ nvinfer1::ITensor* roll(

auto select_registrations TORCHTRT_UNUSED =
    RegisterNodeConversionPatterns()
-        .pattern(
-            {"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensorOrFreeze(ctx);
-               auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
-               auto dim = args[1].unwrapToInt();
-               // Handle negative axis by refering to nbDims of input Tensor
-               dim = dim < 0 ? dim + maxDim : dim;
-               auto ind = (int32_t)args[2].unwrapToInt();
-               // Along the specified dimension, handle negative index by subtracting along length of dimension.
-               ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
-               LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
-               LOG_DEBUG("Dimension to select: " << dim);
-               LOG_DEBUG("Index: " << ind);
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
-               auto const_out = tensor_to_const(ctx, indices);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto out = gather_layer->getOutput(0);
+        .pattern({"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensorOrFreeze(ctx);
+                    auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
+                    auto dim = args[1].unwrapToInt();
+                    // Handle negative axis by refering to nbDims of input Tensor
+                    dim = dim < 0 ? dim + maxDim : dim;
+                    auto ind = (int32_t)args[2].unwrapToInt();
+                    // Along the specified dimension, handle negative index by subtracting along length of dimension.
+                    ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
+                    LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
+                    LOG_DEBUG("Dimension to select: " << dim);
+                    LOG_DEBUG("Index: " << ind);
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
+                    auto const_out = tensor_to_const(ctx, indices);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto out = gather_layer->getOutput(0);
+
+                    LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+
+                    if (out->getDimensions().nbDims != 1) {
+                      // IShuffleLayer removes redundant dimensions
+                      auto shuffle_layer = ctx->net->addShuffle(*out);
+                      TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                      shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
+                      shuffle_layer->setName(util::node_info(n).c_str());
+                      out = shuffle_layer->getOutput(0);
+                    }
+
+                    out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    auto start = (int32_t)args[2].unwrapToInt();
+                    auto length = (int32_t)args[3].unwrapToInt();

-               if (out->getDimensions().nbDims != 1) {
-                 // IShuffleLayer removes redundant dimensions
-                 auto shuffle_layer = ctx->net->addShuffle(*out);
-                 TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-                 shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
-                 shuffle_layer->setName(util::node_info(n).c_str());
-                 out = shuffle_layer->getOutput(0);
-               }
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);

-               out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               auto start = (int32_t)args[2].unwrapToInt();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);

-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
-               int32_t startIdx = start.item().to<int32_t>();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
+                    int32_t startIdx = start.item().to<int32_t>();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
+                    return true;
+                  }})
        .pattern(
            {"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -239,30 +236,29 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto shifts = args[1].unwrapToIntList().vec();
-               auto dims = args[2].unwrapToIntList().vec();
-
-               TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
-               if (ctx->input_is_dynamic) {
-                 TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
-               } else {
-                 auto in_shape = util::toVec(in->getDimensions());
-                 for (size_t i = 0; i < dims.size(); i++) {
-                   auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
-                   TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
-                   in = roll(ctx, in, shifts[i], dim, in_shape);
-                 }
-                 auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
-
-                 LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-                 return true;
-               }
-             }})
+        .pattern({"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto shifts = args[1].unwrapToIntList().vec();
+                    auto dims = args[2].unwrapToIntList().vec();
+
+                    TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
+                    if (ctx->input_is_dynamic) {
+                      TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
+                    } else {
+                      auto in_shape = util::toVec(in->getDimensions());
+                      for (size_t i = 0; i < dims.size(); i++) {
+                        auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
+                        TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
+                        in = roll(ctx, in, shifts[i], dim, in_shape);
+                      }
+                      auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
+
+                      LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                      return true;
+                    }
+                  }})
        .pattern(
            {"aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -319,7 +315,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int startIdx = 0;
               auto startIdxIVal = args[2].IValue();
               if (!startIdxIVal->isNone()) {
-                 startIdx = startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
+                 startIdx =
+                     startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
                 startIdx = maxDim == -1 ? startIdx : std::min(startIdx, maxDim);
               }
               // Handle case when given tensor index is negative
@@ -331,7 +328,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int endIdx = maxDim; // -1 for dynamic shape
               auto endIdxIVal = args[3].IValue();
               if (!endIdxIVal->isNone()) {
-                 int truncate_value = endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
+                 int truncate_value =
+                     endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
                 endIdx = maxDim == -1 ? truncate_value : std::min(truncate_value, maxDim);
               }
               if (maxDim > 0) {
@@ -385,7 +383,8 @@ auto select_registrations TORCHTRT_UNUSED =
                 // update start and end
                 nvinfer1::ITensor* out_start;
                 nvinfer1::ITensor* out_end;
-                 auto start_end = normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
+                 auto start_end =
+                     normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
                 out_start = start_end[0];
                 out_end = start_end[1];

@@ -397,7 +396,7 @@ auto select_registrations TORCHTRT_UNUSED =
                 slice_layer->setInput(2, *size_itensor); // size, must be set if input is dynamic
               }
               auto slice_out = slice_layer->getOutput(0);
-               
+
               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], slice_out);
               LOG_DEBUG("Slice layer output shape: " << out->getDimensions());

diff --git a/workspace/core/lowering/register_trt_placeholder_ops.cpp b/tmp/changes.txt
index 5ba8171..17d7d3f 100644
--- a/workspace/core/lowering/register_trt_placeholder_ops.cpp
+++ b/tmp/changes.txt
@@ -10,7 +10,10 @@ c10::AliasAnalysisKind aliasAnalysisFromSchema() {
RegisterOperators trt_placeholder_ops_reg({
    /// Op marks a Tensor to be conveted from an Torch Tensor
    /// to a TRT constant Tensor
-    Operator("trt::const(Tensor val) -> Tensor", [](Stack& stack) { /*noop*/ }, aliasAnalysisFromSchema()),
+    Operator(
+        "trt::const(Tensor val) -> Tensor",
+        [](Stack& stack) { /*noop*/ },
+        aliasAnalysisFromSchema()),
});

} // namespace jit
diff --git a/workspace/core/partitioning/partitioning.cpp b/tmp/changes.txt
index 8fcd29f..8d54b51 100644
--- a/workspace/core/partitioning/partitioning.cpp
+++ b/tmp/changes.txt
@@ -124,7 +124,8 @@ void find_all_fallback_nodes(
      if (!isTensor(output)) {
        for (auto use : output->uses()) {
          auto node = use.user;
-          if (node->kind() != torch::jit::prim::Constant && global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
+          if (node->kind() != torch::jit::prim::Constant &&
+              global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
            q.push(node);
          }
        }
diff --git a/workspace/core/conversion/converters/converter_util.h b/tmp/changes.txt
index cdf2ee5..b155499 100644
--- a/workspace/core/conversion/converters/converter_util.h
+++ b/tmp/changes.txt
@@ -1,8 +1,8 @@
#pragma once

+#include <limits>
#include <map>
#include <string>
-#include <limits>

#include "core/conversion/conversionctx/ConversionCtx.h"
#include "core/conversion/converters/Weights.h"
diff --git a/workspace/tests/core/conversion/converters/test_cast.cpp b/tmp/changes.txt
index 092cdb3..d26c7a0 100644
--- a/workspace/tests/core/conversion/converters/test_cast.cpp
+++ b/tmp/changes.txt
@@ -135,7 +135,6 @@ TEST(Converters, ATenBoolToINT32TensorConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenToSingleConvertsCorrectly) {
  const auto graph = R"IR(
    graph(%y.1 : Tensor):
@@ -164,7 +163,6 @@ TEST(Converters, ATenToSingleConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenTypeAsConvertsCorrectly) {
  const auto graph = R"IR(
      graph(%0 : Tensor,
diff --git a/workspace/cpp/bin/torchtrtc/main.cpp b/tmp/changes.txt
index 6c207d7..51ec2c5 100644
--- a/workspace/cpp/bin/torchtrtc/main.cpp
+++ b/tmp/changes.txt
@@ -117,8 +117,7 @@ int main(int argc, char** argv) {
      parser, "num_iters", "Number of averaging timing iterations used to select kernels", {"num-avg-timing-iters"});
  args::ValueFlag<uint64_t> workspace_size(
      parser, "workspace_size", "Maximum size of workspace given to TensorRT", {"workspace-size"});
-  args::ValueFlag<uint64_t> dla_sram_size(
-      parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
+  args::ValueFlag<uint64_t> dla_sram_size(parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
  args::ValueFlag<uint64_t> dla_local_dram_size(
      parser, "dla_local_dram_size", "DLA Local DRAM size", {"dla-local-dram-size"});
  args::ValueFlag<uint64_t> dla_global_dram_size(
ERROR: Some files do not conform to style guidelines

@frank-wei
Copy link
Contributor Author

frank-wei commented Aug 2, 2022

@narendasan could you check the failure (pybind issues) in ci/circleci: build-x86_64-pyt-nightly? Is it related to nightly pytorch version update in my PR?

@narendasan narendasan requested a review from peri044 August 3, 2022 02:51
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp b/tmp/changes.txt
index 5aeac3b..775c71d 100644
--- a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -225,11 +225,17 @@ core::CompileSpec CompileSpec::toInternalCompileSpec() {
  info.convert_info.engine_settings.num_avg_timing_iters = num_avg_timing_iters;
  TORCHTRT_CHECK(workspace_size >= 0, "workspace_size must be 0 or greater");
  info.convert_info.engine_settings.workspace_size = workspace_size;
-  TORCHTRT_CHECK(dla_sram_size >= 4096, "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
+  TORCHTRT_CHECK(
+      dla_sram_size >= 4096,
+      "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
  info.convert_info.engine_settings.dla_sram_size = dla_sram_size;
-  TORCHTRT_CHECK(dla_local_dram_size >= 4096, "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
+  TORCHTRT_CHECK(
+      dla_local_dram_size >= 4096,
+      "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
  info.convert_info.engine_settings.dla_local_dram_size = dla_local_dram_size;
-  TORCHTRT_CHECK(dla_global_dram_size >= 4096, "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
+  TORCHTRT_CHECK(
+      dla_global_dram_size >= 4096,
+      "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
  info.convert_info.engine_settings.dla_global_dram_size = dla_global_dram_size;
  return info;
}
diff --git a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp b/tmp/changes.txt
index 9165b21..ba2e168 100644
--- a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -65,7 +65,8 @@ void RegisterTRTCompileSpec() {
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, workspace_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_sram_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_local_dram_size);
-  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
+  ADD_FIELD_GET_SET_REGISTRATION(
+      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
  ADD_FIELD_GET_SET_REGISTRATION(
      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, truncate_long_and_double);
}
diff --git a/workspace/core/conversion/conversionctx/ConversionCtx.cpp b/tmp/changes.txt
index a24a159..71159eb 100644
--- a/workspace/core/conversion/conversionctx/ConversionCtx.cpp
+++ b/tmp/changes.txt
@@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
  }

  cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
-  if (settings.workspace_size != 0){
+  if (settings.workspace_size != 0) {
    cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
  }

@@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
        settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
        "DLA supports only fp16 or int8 precision");
    cfg->setDLACore(settings.device.dla_core);
-    if (settings.dla_sram_size != 1048576){
+    if (settings.dla_sram_size != 1048576) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
    }
-    if (settings.dla_local_dram_size != 1073741824){
+    if (settings.dla_local_dram_size != 1073741824) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
    }
-    if (settings.dla_global_dram_size != 536870912){
+    if (settings.dla_global_dram_size != 536870912) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
    }
  }
diff --git a/workspace/core/conversion/converters/converter_util.cpp b/tmp/changes.txt
index a6a2bbd..7452615 100644
--- a/workspace/core/conversion/converters/converter_util.cpp
+++ b/tmp/changes.txt
@@ -207,13 +207,13 @@ nvinfer1::ITensor* clamp(
    nvinfer1::ITensor* lower_bound,
    nvinfer1::ITensor* upper_bound,
    std::string const& name) {
-
  auto max_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMAX, x, lower_bound, "max layer for " + name);
  TORCHTRT_CHECK(max_layer, "Unable to create max layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp");
  auto min_itensor = min_layer->getOutput(0);
@@ -227,13 +227,13 @@ nvinfer1::ITensor* clamp_to_input_dim(
    nvinfer1::ITensor* input_dim,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
  auto one = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one);

-  auto upper_bound_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
+  auto upper_bound_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
  TORCHTRT_CHECK(upper_bound_layer, "Unable to create sub layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << upper_bound_layer->getName() << " for clamp to inputDim");
  auto upper_bound = upper_bound_layer->getOutput(0);
@@ -243,7 +243,8 @@ nvinfer1::ITensor* clamp_to_input_dim(
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp to inputDim");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min_layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp to inputDim");
  auto min_itensor = min_layer->getOutput(0);
@@ -257,7 +258,6 @@ nvinfer1::ITensor* normalize_indices(
    nvinfer1::ITensor* indices,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto neg = -torch::ones({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
@@ -307,17 +307,20 @@ nvinfer1::ITensor* get_slice_size(
  at::Tensor one_tensor = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one_tensor);

-  auto sub_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
+  auto sub_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
  TORCHTRT_CHECK(sub_layer, "Unable to create sub layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << sub_layer->getName() << " for calculate_output_size");
  auto sub_itensor = sub_layer->getOutput(0);

-  auto div_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
+  auto div_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
  TORCHTRT_CHECK(div_layer, "Unable to create div layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << div_layer->getName() << " for calculate_output_size");
  auto div_itensor = div_layer->getOutput(0);

-  auto add_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
+  auto add_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
  TORCHTRT_CHECK(add_layer, "Unable to create add layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << add_layer->getName() << " for calculate_output_size");
  auto size_itensor = add_layer->getOutput(0);
diff --git a/workspace/core/conversion/converters/impl/select.cpp b/tmp/changes.txt
index 3599ab9..d33f09a 100644
--- a/workspace/core/conversion/converters/impl/select.cpp
+++ b/tmp/changes.txt
@@ -103,121 +103,118 @@ nvinfer1::ITensor* roll(

auto select_registrations TORCHTRT_UNUSED =
    RegisterNodeConversionPatterns()
-        .pattern(
-            {"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensorOrFreeze(ctx);
-               auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
-               auto dim = args[1].unwrapToInt();
-               // Handle negative axis by refering to nbDims of input Tensor
-               dim = dim < 0 ? dim + maxDim : dim;
-               auto ind = (int32_t)args[2].unwrapToInt();
-               // Along the specified dimension, handle negative index by subtracting along length of dimension.
-               ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
-               LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
-               LOG_DEBUG("Dimension to select: " << dim);
-               LOG_DEBUG("Index: " << ind);
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
-               auto const_out = tensor_to_const(ctx, indices);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto out = gather_layer->getOutput(0);
+        .pattern({"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensorOrFreeze(ctx);
+                    auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
+                    auto dim = args[1].unwrapToInt();
+                    // Handle negative axis by refering to nbDims of input Tensor
+                    dim = dim < 0 ? dim + maxDim : dim;
+                    auto ind = (int32_t)args[2].unwrapToInt();
+                    // Along the specified dimension, handle negative index by subtracting along length of dimension.
+                    ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
+                    LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
+                    LOG_DEBUG("Dimension to select: " << dim);
+                    LOG_DEBUG("Index: " << ind);
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
+                    auto const_out = tensor_to_const(ctx, indices);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto out = gather_layer->getOutput(0);
+
+                    LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+
+                    if (out->getDimensions().nbDims != 1) {
+                      // IShuffleLayer removes redundant dimensions
+                      auto shuffle_layer = ctx->net->addShuffle(*out);
+                      TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                      shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
+                      shuffle_layer->setName(util::node_info(n).c_str());
+                      out = shuffle_layer->getOutput(0);
+                    }
+
+                    out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    auto start = (int32_t)args[2].unwrapToInt();
+                    auto length = (int32_t)args[3].unwrapToInt();

-               if (out->getDimensions().nbDims != 1) {
-                 // IShuffleLayer removes redundant dimensions
-                 auto shuffle_layer = ctx->net->addShuffle(*out);
-                 TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-                 shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
-                 shuffle_layer->setName(util::node_info(n).c_str());
-                 out = shuffle_layer->getOutput(0);
-               }
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);

-               out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               auto start = (int32_t)args[2].unwrapToInt();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);

-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
-               int32_t startIdx = start.item().to<int32_t>();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
+                    int32_t startIdx = start.item().to<int32_t>();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
+                    return true;
+                  }})
        .pattern(
            {"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -239,30 +236,29 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto shifts = args[1].unwrapToIntList().vec();
-               auto dims = args[2].unwrapToIntList().vec();
-
-               TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
-               if (ctx->input_is_dynamic) {
-                 TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
-               } else {
-                 auto in_shape = util::toVec(in->getDimensions());
-                 for (size_t i = 0; i < dims.size(); i++) {
-                   auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
-                   TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
-                   in = roll(ctx, in, shifts[i], dim, in_shape);
-                 }
-                 auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
-
-                 LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-                 return true;
-               }
-             }})
+        .pattern({"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto shifts = args[1].unwrapToIntList().vec();
+                    auto dims = args[2].unwrapToIntList().vec();
+
+                    TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
+                    if (ctx->input_is_dynamic) {
+                      TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
+                    } else {
+                      auto in_shape = util::toVec(in->getDimensions());
+                      for (size_t i = 0; i < dims.size(); i++) {
+                        auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
+                        TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
+                        in = roll(ctx, in, shifts[i], dim, in_shape);
+                      }
+                      auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
+
+                      LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                      return true;
+                    }
+                  }})
        .pattern(
            {"aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -319,7 +315,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int startIdx = 0;
               auto startIdxIVal = args[2].IValue();
               if (!startIdxIVal->isNone()) {
-                 startIdx = startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
+                 startIdx =
+                     startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
                 startIdx = maxDim == -1 ? startIdx : std::min(startIdx, maxDim);
               }
               // Handle case when given tensor index is negative
@@ -331,7 +328,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int endIdx = maxDim; // -1 for dynamic shape
               auto endIdxIVal = args[3].IValue();
               if (!endIdxIVal->isNone()) {
-                 int truncate_value = endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
+                 int truncate_value =
+                     endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
                 endIdx = maxDim == -1 ? truncate_value : std::min(truncate_value, maxDim);
               }
               if (maxDim > 0) {
@@ -385,7 +383,8 @@ auto select_registrations TORCHTRT_UNUSED =
                 // update start and end
                 nvinfer1::ITensor* out_start;
                 nvinfer1::ITensor* out_end;
-                 auto start_end = normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
+                 auto start_end =
+                     normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
                 out_start = start_end[0];
                 out_end = start_end[1];

@@ -397,7 +396,7 @@ auto select_registrations TORCHTRT_UNUSED =
                 slice_layer->setInput(2, *size_itensor); // size, must be set if input is dynamic
               }
               auto slice_out = slice_layer->getOutput(0);
-               
+
               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], slice_out);
               LOG_DEBUG("Slice layer output shape: " << out->getDimensions());

diff --git a/workspace/core/lowering/register_trt_placeholder_ops.cpp b/tmp/changes.txt
index 5ba8171..17d7d3f 100644
--- a/workspace/core/lowering/register_trt_placeholder_ops.cpp
+++ b/tmp/changes.txt
@@ -10,7 +10,10 @@ c10::AliasAnalysisKind aliasAnalysisFromSchema() {
RegisterOperators trt_placeholder_ops_reg({
    /// Op marks a Tensor to be conveted from an Torch Tensor
    /// to a TRT constant Tensor
-    Operator("trt::const(Tensor val) -> Tensor", [](Stack& stack) { /*noop*/ }, aliasAnalysisFromSchema()),
+    Operator(
+        "trt::const(Tensor val) -> Tensor",
+        [](Stack& stack) { /*noop*/ },
+        aliasAnalysisFromSchema()),
});

} // namespace jit
diff --git a/workspace/core/partitioning/partitioning.cpp b/tmp/changes.txt
index 8fcd29f..8d54b51 100644
--- a/workspace/core/partitioning/partitioning.cpp
+++ b/tmp/changes.txt
@@ -124,7 +124,8 @@ void find_all_fallback_nodes(
      if (!isTensor(output)) {
        for (auto use : output->uses()) {
          auto node = use.user;
-          if (node->kind() != torch::jit::prim::Constant && global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
+          if (node->kind() != torch::jit::prim::Constant &&
+              global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
            q.push(node);
          }
        }
diff --git a/workspace/core/conversion/converters/converter_util.h b/tmp/changes.txt
index cdf2ee5..b155499 100644
--- a/workspace/core/conversion/converters/converter_util.h
+++ b/tmp/changes.txt
@@ -1,8 +1,8 @@
#pragma once

+#include <limits>
#include <map>
#include <string>
-#include <limits>

#include "core/conversion/conversionctx/ConversionCtx.h"
#include "core/conversion/converters/Weights.h"
diff --git a/workspace/tests/core/conversion/converters/test_cast.cpp b/tmp/changes.txt
index 092cdb3..d26c7a0 100644
--- a/workspace/tests/core/conversion/converters/test_cast.cpp
+++ b/tmp/changes.txt
@@ -135,7 +135,6 @@ TEST(Converters, ATenBoolToINT32TensorConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenToSingleConvertsCorrectly) {
  const auto graph = R"IR(
    graph(%y.1 : Tensor):
@@ -164,7 +163,6 @@ TEST(Converters, ATenToSingleConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenTypeAsConvertsCorrectly) {
  const auto graph = R"IR(
      graph(%0 : Tensor,
diff --git a/workspace/cpp/bin/torchtrtc/main.cpp b/tmp/changes.txt
index 6c207d7..51ec2c5 100644
--- a/workspace/cpp/bin/torchtrtc/main.cpp
+++ b/tmp/changes.txt
@@ -117,8 +117,7 @@ int main(int argc, char** argv) {
      parser, "num_iters", "Number of averaging timing iterations used to select kernels", {"num-avg-timing-iters"});
  args::ValueFlag<uint64_t> workspace_size(
      parser, "workspace_size", "Maximum size of workspace given to TensorRT", {"workspace-size"});
-  args::ValueFlag<uint64_t> dla_sram_size(
-      parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
+  args::ValueFlag<uint64_t> dla_sram_size(parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
  args::ValueFlag<uint64_t> dla_local_dram_size(
      parser, "dla_local_dram_size", "DLA Local DRAM size", {"dla-local-dram-size"});
  args::ValueFlag<uint64_t> dla_global_dram_size(
ERROR: Some files do not conform to style guidelines

@narendasan
Copy link
Collaborator

Yeah seems like the new nightly version has changed the version of pybind and we are using the torch distributed headers when compiling:

torch_tensorrt/csrc/torch_tensorrt_py.cpp: In member function ‘virtual const void* torch_tensorrt::pyapi::pyIInt8LegacyCalibrator::readHistogramCache(std::size_t&)’:
/opt/circleci/.pyenv/versions/3.9.4/lib/python3.9/site-packages/torch/include/pybind11/pybind11.h:2760:57: error: void value not ignored as it ought to be
 2760 |             return pybind11::detail::cast_safe<ret_type>(std::move(o));                           \
      |                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~
/opt/circleci/.pyenv/versions/3.9.4/lib/python3.9/site-packages/torch/include/pybind11/pybind11.h:2794:9: note: in expansion of macro ‘PYBIND11_OVERRIDE_IMPL’
 2794 |         PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__); \
      |         ^~~~~~~~~~~~~~~~~~~~~~
/opt/circleci/.pyenv/versions/3.9.4/lib/python3.9/site-packages/torch/include/pybind11/pybind11.h:2853:5: note: in expansion of macro ‘PYBIND11_OVERRIDE_PURE_NAME’
 2853 |     PYBIND11_OVERRIDE_PURE_NAME(                                                                  \
      |     ^~~~~~~~~~~~~~~~~~~~~~~~~~~
torch_tensorrt/csrc/torch_tensorrt_py.cpp:92:5: note: in expansion of macro ‘PYBIND11_OVERLOAD_PURE_NAME’
   92 |     PYBIND11_OVERLOAD_PURE_NAME(
      |     ^~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /opt/circleci/.pyenv/versions/3.9.4/lib/python3.9/site-packages/torch/include/torch/csrc/utils/python_arg_parser.h:63,
                 from /opt/circleci/.pyenv/versions/3.9.4/lib/python3.9/site-packages/torch/include/torch/csrc/jit/python/pybind_utils.h:26,
                 from torch_tensorrt/csrc/torch_tensorrt_py.cpp:8:
/opt/circleci/.pyenv/versions/3.9.4/lib/python3.9/site-packages/torch/include/torch/csrc/utils/python_strings.h: At global scope:
/opt/circleci/.pyenv/versions/3.9.4/lib/python3.9/site-packages/torch/include/torch/csrc/utils/python_strings.h:106:19: warning: ‘pybind11::object PyObject_FastGetAttrString(PyObject*, const char*)’ defined but not used [-Wunused-function]
  106 | static py::object PyObject_FastGetAttrString(PyObject* obj, const char* name) {
      |                   ^~~~~~~~~~~~~~~~~~~~~~~~~~
error: command '/usr/bin/gcc' failed with exit code 1

@peri044 Do you know what needs to be done here to update to the new version?

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp b/tmp/changes.txt
index 5aeac3b..775c71d 100644
--- a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -225,11 +225,17 @@ core::CompileSpec CompileSpec::toInternalCompileSpec() {
  info.convert_info.engine_settings.num_avg_timing_iters = num_avg_timing_iters;
  TORCHTRT_CHECK(workspace_size >= 0, "workspace_size must be 0 or greater");
  info.convert_info.engine_settings.workspace_size = workspace_size;
-  TORCHTRT_CHECK(dla_sram_size >= 4096, "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
+  TORCHTRT_CHECK(
+      dla_sram_size >= 4096,
+      "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
  info.convert_info.engine_settings.dla_sram_size = dla_sram_size;
-  TORCHTRT_CHECK(dla_local_dram_size >= 4096, "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
+  TORCHTRT_CHECK(
+      dla_local_dram_size >= 4096,
+      "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
  info.convert_info.engine_settings.dla_local_dram_size = dla_local_dram_size;
-  TORCHTRT_CHECK(dla_global_dram_size >= 4096, "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
+  TORCHTRT_CHECK(
+      dla_global_dram_size >= 4096,
+      "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
  info.convert_info.engine_settings.dla_global_dram_size = dla_global_dram_size;
  return info;
}
diff --git a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp b/tmp/changes.txt
index 9165b21..ba2e168 100644
--- a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -65,7 +65,8 @@ void RegisterTRTCompileSpec() {
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, workspace_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_sram_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_local_dram_size);
-  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
+  ADD_FIELD_GET_SET_REGISTRATION(
+      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
  ADD_FIELD_GET_SET_REGISTRATION(
      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, truncate_long_and_double);
}
diff --git a/workspace/core/conversion/conversionctx/ConversionCtx.cpp b/tmp/changes.txt
index a24a159..71159eb 100644
--- a/workspace/core/conversion/conversionctx/ConversionCtx.cpp
+++ b/tmp/changes.txt
@@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
  }

  cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
-  if (settings.workspace_size != 0){
+  if (settings.workspace_size != 0) {
    cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
  }

@@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
        settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
        "DLA supports only fp16 or int8 precision");
    cfg->setDLACore(settings.device.dla_core);
-    if (settings.dla_sram_size != 1048576){
+    if (settings.dla_sram_size != 1048576) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
    }
-    if (settings.dla_local_dram_size != 1073741824){
+    if (settings.dla_local_dram_size != 1073741824) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
    }
-    if (settings.dla_global_dram_size != 536870912){
+    if (settings.dla_global_dram_size != 536870912) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
    }
  }
diff --git a/workspace/core/conversion/converters/converter_util.cpp b/tmp/changes.txt
index a6a2bbd..7452615 100644
--- a/workspace/core/conversion/converters/converter_util.cpp
+++ b/tmp/changes.txt
@@ -207,13 +207,13 @@ nvinfer1::ITensor* clamp(
    nvinfer1::ITensor* lower_bound,
    nvinfer1::ITensor* upper_bound,
    std::string const& name) {
-
  auto max_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMAX, x, lower_bound, "max layer for " + name);
  TORCHTRT_CHECK(max_layer, "Unable to create max layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp");
  auto min_itensor = min_layer->getOutput(0);
@@ -227,13 +227,13 @@ nvinfer1::ITensor* clamp_to_input_dim(
    nvinfer1::ITensor* input_dim,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
  auto one = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one);

-  auto upper_bound_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
+  auto upper_bound_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
  TORCHTRT_CHECK(upper_bound_layer, "Unable to create sub layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << upper_bound_layer->getName() << " for clamp to inputDim");
  auto upper_bound = upper_bound_layer->getOutput(0);
@@ -243,7 +243,8 @@ nvinfer1::ITensor* clamp_to_input_dim(
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp to inputDim");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min_layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp to inputDim");
  auto min_itensor = min_layer->getOutput(0);
@@ -257,7 +258,6 @@ nvinfer1::ITensor* normalize_indices(
    nvinfer1::ITensor* indices,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto neg = -torch::ones({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
@@ -307,17 +307,20 @@ nvinfer1::ITensor* get_slice_size(
  at::Tensor one_tensor = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one_tensor);

-  auto sub_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
+  auto sub_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
  TORCHTRT_CHECK(sub_layer, "Unable to create sub layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << sub_layer->getName() << " for calculate_output_size");
  auto sub_itensor = sub_layer->getOutput(0);

-  auto div_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
+  auto div_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
  TORCHTRT_CHECK(div_layer, "Unable to create div layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << div_layer->getName() << " for calculate_output_size");
  auto div_itensor = div_layer->getOutput(0);

-  auto add_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
+  auto add_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
  TORCHTRT_CHECK(add_layer, "Unable to create add layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << add_layer->getName() << " for calculate_output_size");
  auto size_itensor = add_layer->getOutput(0);
diff --git a/workspace/core/conversion/converters/impl/select.cpp b/tmp/changes.txt
index 3599ab9..d33f09a 100644
--- a/workspace/core/conversion/converters/impl/select.cpp
+++ b/tmp/changes.txt
@@ -103,121 +103,118 @@ nvinfer1::ITensor* roll(

auto select_registrations TORCHTRT_UNUSED =
    RegisterNodeConversionPatterns()
-        .pattern(
-            {"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensorOrFreeze(ctx);
-               auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
-               auto dim = args[1].unwrapToInt();
-               // Handle negative axis by refering to nbDims of input Tensor
-               dim = dim < 0 ? dim + maxDim : dim;
-               auto ind = (int32_t)args[2].unwrapToInt();
-               // Along the specified dimension, handle negative index by subtracting along length of dimension.
-               ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
-               LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
-               LOG_DEBUG("Dimension to select: " << dim);
-               LOG_DEBUG("Index: " << ind);
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
-               auto const_out = tensor_to_const(ctx, indices);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto out = gather_layer->getOutput(0);
+        .pattern({"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensorOrFreeze(ctx);
+                    auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
+                    auto dim = args[1].unwrapToInt();
+                    // Handle negative axis by refering to nbDims of input Tensor
+                    dim = dim < 0 ? dim + maxDim : dim;
+                    auto ind = (int32_t)args[2].unwrapToInt();
+                    // Along the specified dimension, handle negative index by subtracting along length of dimension.
+                    ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
+                    LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
+                    LOG_DEBUG("Dimension to select: " << dim);
+                    LOG_DEBUG("Index: " << ind);
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
+                    auto const_out = tensor_to_const(ctx, indices);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto out = gather_layer->getOutput(0);
+
+                    LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+
+                    if (out->getDimensions().nbDims != 1) {
+                      // IShuffleLayer removes redundant dimensions
+                      auto shuffle_layer = ctx->net->addShuffle(*out);
+                      TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                      shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
+                      shuffle_layer->setName(util::node_info(n).c_str());
+                      out = shuffle_layer->getOutput(0);
+                    }
+
+                    out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    auto start = (int32_t)args[2].unwrapToInt();
+                    auto length = (int32_t)args[3].unwrapToInt();

-               if (out->getDimensions().nbDims != 1) {
-                 // IShuffleLayer removes redundant dimensions
-                 auto shuffle_layer = ctx->net->addShuffle(*out);
-                 TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-                 shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
-                 shuffle_layer->setName(util::node_info(n).c_str());
-                 out = shuffle_layer->getOutput(0);
-               }
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);

-               out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               auto start = (int32_t)args[2].unwrapToInt();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);

-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
-               int32_t startIdx = start.item().to<int32_t>();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
+                    int32_t startIdx = start.item().to<int32_t>();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
+                    return true;
+                  }})
        .pattern(
            {"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -239,30 +236,29 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto shifts = args[1].unwrapToIntList().vec();
-               auto dims = args[2].unwrapToIntList().vec();
-
-               TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
-               if (ctx->input_is_dynamic) {
-                 TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
-               } else {
-                 auto in_shape = util::toVec(in->getDimensions());
-                 for (size_t i = 0; i < dims.size(); i++) {
-                   auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
-                   TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
-                   in = roll(ctx, in, shifts[i], dim, in_shape);
-                 }
-                 auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
-
-                 LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-                 return true;
-               }
-             }})
+        .pattern({"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto shifts = args[1].unwrapToIntList().vec();
+                    auto dims = args[2].unwrapToIntList().vec();
+
+                    TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
+                    if (ctx->input_is_dynamic) {
+                      TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
+                    } else {
+                      auto in_shape = util::toVec(in->getDimensions());
+                      for (size_t i = 0; i < dims.size(); i++) {
+                        auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
+                        TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
+                        in = roll(ctx, in, shifts[i], dim, in_shape);
+                      }
+                      auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
+
+                      LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                      return true;
+                    }
+                  }})
        .pattern(
            {"aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -319,7 +315,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int startIdx = 0;
               auto startIdxIVal = args[2].IValue();
               if (!startIdxIVal->isNone()) {
-                 startIdx = startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
+                 startIdx =
+                     startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
                 startIdx = maxDim == -1 ? startIdx : std::min(startIdx, maxDim);
               }
               // Handle case when given tensor index is negative
@@ -331,7 +328,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int endIdx = maxDim; // -1 for dynamic shape
               auto endIdxIVal = args[3].IValue();
               if (!endIdxIVal->isNone()) {
-                 int truncate_value = endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
+                 int truncate_value =
+                     endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
                 endIdx = maxDim == -1 ? truncate_value : std::min(truncate_value, maxDim);
               }
               if (maxDim > 0) {
@@ -385,7 +383,8 @@ auto select_registrations TORCHTRT_UNUSED =
                 // update start and end
                 nvinfer1::ITensor* out_start;
                 nvinfer1::ITensor* out_end;
-                 auto start_end = normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
+                 auto start_end =
+                     normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
                 out_start = start_end[0];
                 out_end = start_end[1];

@@ -397,7 +396,7 @@ auto select_registrations TORCHTRT_UNUSED =
                 slice_layer->setInput(2, *size_itensor); // size, must be set if input is dynamic
               }
               auto slice_out = slice_layer->getOutput(0);
-               
+
               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], slice_out);
               LOG_DEBUG("Slice layer output shape: " << out->getDimensions());

diff --git a/workspace/core/lowering/register_trt_placeholder_ops.cpp b/tmp/changes.txt
index 5ba8171..17d7d3f 100644
--- a/workspace/core/lowering/register_trt_placeholder_ops.cpp
+++ b/tmp/changes.txt
@@ -10,7 +10,10 @@ c10::AliasAnalysisKind aliasAnalysisFromSchema() {
RegisterOperators trt_placeholder_ops_reg({
    /// Op marks a Tensor to be conveted from an Torch Tensor
    /// to a TRT constant Tensor
-    Operator("trt::const(Tensor val) -> Tensor", [](Stack& stack) { /*noop*/ }, aliasAnalysisFromSchema()),
+    Operator(
+        "trt::const(Tensor val) -> Tensor",
+        [](Stack& stack) { /*noop*/ },
+        aliasAnalysisFromSchema()),
});

} // namespace jit
diff --git a/workspace/core/partitioning/partitioning.cpp b/tmp/changes.txt
index 8fcd29f..8d54b51 100644
--- a/workspace/core/partitioning/partitioning.cpp
+++ b/tmp/changes.txt
@@ -124,7 +124,8 @@ void find_all_fallback_nodes(
      if (!isTensor(output)) {
        for (auto use : output->uses()) {
          auto node = use.user;
-          if (node->kind() != torch::jit::prim::Constant && global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
+          if (node->kind() != torch::jit::prim::Constant &&
+              global_fallback_nodes.insert({node, FallbackNodeType::kNON_TENSOR}).second) {
            q.push(node);
          }
        }
diff --git a/workspace/core/conversion/converters/converter_util.h b/tmp/changes.txt
index cdf2ee5..b155499 100644
--- a/workspace/core/conversion/converters/converter_util.h
+++ b/tmp/changes.txt
@@ -1,8 +1,8 @@
#pragma once

+#include <limits>
#include <map>
#include <string>
-#include <limits>

#include "core/conversion/conversionctx/ConversionCtx.h"
#include "core/conversion/converters/Weights.h"
diff --git a/workspace/tests/core/conversion/converters/test_cast.cpp b/tmp/changes.txt
index 092cdb3..d26c7a0 100644
--- a/workspace/tests/core/conversion/converters/test_cast.cpp
+++ b/tmp/changes.txt
@@ -135,7 +135,6 @@ TEST(Converters, ATenBoolToINT32TensorConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenToSingleConvertsCorrectly) {
  const auto graph = R"IR(
    graph(%y.1 : Tensor):
@@ -164,7 +163,6 @@ TEST(Converters, ATenToSingleConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenTypeAsConvertsCorrectly) {
  const auto graph = R"IR(
      graph(%0 : Tensor,
diff --git a/workspace/cpp/bin/torchtrtc/main.cpp b/tmp/changes.txt
index 6c207d7..51ec2c5 100644
--- a/workspace/cpp/bin/torchtrtc/main.cpp
+++ b/tmp/changes.txt
@@ -117,8 +117,7 @@ int main(int argc, char** argv) {
      parser, "num_iters", "Number of averaging timing iterations used to select kernels", {"num-avg-timing-iters"});
  args::ValueFlag<uint64_t> workspace_size(
      parser, "workspace_size", "Maximum size of workspace given to TensorRT", {"workspace-size"});
-  args::ValueFlag<uint64_t> dla_sram_size(
-      parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
+  args::ValueFlag<uint64_t> dla_sram_size(parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
  args::ValueFlag<uint64_t> dla_local_dram_size(
      parser, "dla_local_dram_size", "DLA Local DRAM size", {"dla-local-dram-size"});
  args::ValueFlag<uint64_t> dla_global_dram_size(
ERROR: Some files do not conform to style guidelines

Copy link

@yinghai yinghai left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we fix these format errors by any chance? it's very noisy.

@frank-wei
Copy link
Contributor Author

@narendasan @peri044 it looks like the docker image contains the c++ linter execution file. I do not have permission to access this docker.
But in the long run, can we move the linter execution file to this repo so people can easily access it and run linter if needed.

@narendasan
Copy link
Collaborator

You can disable the linter task for now, we are overhauling the system. Hopefully it's closer to your internal style as well #1223

@narendasan
Copy link
Collaborator

You can also run the linter on your host, there are instructions in CONTRIBUTING.md

@github-actions github-actions bot added the component: api [C++] Issues re: C++ API label Aug 5, 2022
@github-actions github-actions bot added component: conversion Issues re: Conversion stage component: converters Issues re: Specific op converters component: core Issues re: The core compiler component: lowering Issues re: The lowering / preprocessing passes component: partitioning component: tests Issues re: Tests labels Aug 5, 2022
@frank-wei
Copy link
Contributor Author

frank-wei commented Aug 5, 2022

You can also run the linter on your host, there are instructions in CONTRIBUTING.md

thanks, I ran it locally and fixed the format.

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/core/conversion/converters/impl/select.cpp b/tmp/changes.txt
index f1a15a5..d33f09a 100644
--- a/workspace/core/conversion/converters/impl/select.cpp
+++ b/tmp/changes.txt
@@ -103,121 +103,118 @@ nvinfer1::ITensor* roll(

auto select_registrations TORCHTRT_UNUSED =
    RegisterNodeConversionPatterns()
-        .pattern(
-            {"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensorOrFreeze(ctx);
-               auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
-               auto dim = args[1].unwrapToInt();
-               // Handle negative axis by refering to nbDims of input Tensor
-               dim = dim < 0 ? dim + maxDim : dim;
-               auto ind = (int32_t)args[2].unwrapToInt();
-               // Along the specified dimension, handle negative index by subtracting along length of dimension.
-               ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
-               LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
-               LOG_DEBUG("Dimension to select: " << dim);
-               LOG_DEBUG("Index: " << ind);
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
-               auto const_out = tensor_to_const(ctx, indices);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto out = gather_layer->getOutput(0);
-
-               LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
-
-               if (out->getDimensions().nbDims != 1) {
-                 // IShuffleLayer removes redundant dimensions
-                 auto shuffle_layer = ctx->net->addShuffle(*out);
-                 TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-                 shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
-                 shuffle_layer->setName(util::node_info(n).c_str());
-                 out = shuffle_layer->getOutput(0);
-               }
-
-               out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-               return true;
-             }})
-        .pattern(
-            {"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               auto start = (int32_t)args[2].unwrapToInt();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-               return true;
-             }})
-        .pattern(
-            {"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
-               int32_t startIdx = start.item().to<int32_t>();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-               return true;
-             }})
+        .pattern({"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensorOrFreeze(ctx);
+                    auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
+                    auto dim = args[1].unwrapToInt();
+                    // Handle negative axis by refering to nbDims of input Tensor
+                    dim = dim < 0 ? dim + maxDim : dim;
+                    auto ind = (int32_t)args[2].unwrapToInt();
+                    // Along the specified dimension, handle negative index by subtracting along length of dimension.
+                    ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
+                    LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
+                    LOG_DEBUG("Dimension to select: " << dim);
+                    LOG_DEBUG("Index: " << ind);
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
+                    auto const_out = tensor_to_const(ctx, indices);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto out = gather_layer->getOutput(0);
+
+                    LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+
+                    if (out->getDimensions().nbDims != 1) {
+                      // IShuffleLayer removes redundant dimensions
+                      auto shuffle_layer = ctx->net->addShuffle(*out);
+                      TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                      shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
+                      shuffle_layer->setName(util::node_info(n).c_str());
+                      out = shuffle_layer->getOutput(0);
+                    }
+
+                    out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                    return true;
+                  }})
+        .pattern({"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    auto start = (int32_t)args[2].unwrapToInt();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                    return true;
+                  }})
+        .pattern({"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
+                    int32_t startIdx = start.item().to<int32_t>();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                    return true;
+                  }})
        .pattern(
            {"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -239,30 +236,29 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto shifts = args[1].unwrapToIntList().vec();
-               auto dims = args[2].unwrapToIntList().vec();
-
-               TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
-               if (ctx->input_is_dynamic) {
-                 TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
-               } else {
-                 auto in_shape = util::toVec(in->getDimensions());
-                 for (size_t i = 0; i < dims.size(); i++) {
-                   auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
-                   TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
-                   in = roll(ctx, in, shifts[i], dim, in_shape);
-                 }
-                 auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
-
-                 LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-                 return true;
-               }
-             }})
+        .pattern({"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto shifts = args[1].unwrapToIntList().vec();
+                    auto dims = args[2].unwrapToIntList().vec();
+
+                    TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
+                    if (ctx->input_is_dynamic) {
+                      TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
+                    } else {
+                      auto in_shape = util::toVec(in->getDimensions());
+                      for (size_t i = 0; i < dims.size(); i++) {
+                        auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
+                        TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
+                        in = roll(ctx, in, shifts[i], dim, in_shape);
+                      }
+                      auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
+
+                      LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                      return true;
+                    }
+                  }})
        .pattern(
            {"aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -406,63 +402,57 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::split(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[])",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               add_split(ctx, n, args, true, false);
-               LOG_DEBUG("Converted split op into a list of IValues");
-               return true;
-             }})
-        .pattern(
-            {"aten::split.sizes(Tensor(a -> *) self, int[] split_size, int dim=0) -> (Tensor[])",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               add_split(ctx, n, args, true, false);
-               LOG_DEBUG("Converted split op into a list of IValues");
-               return true;
-             }})
-        .pattern(
-            {"aten::split.Tensor(Tensor(a) self, int split_size, int dim=0) -> (Tensor[])",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               add_split(ctx, n, args, false, false);
-               LOG_DEBUG("Converted split op into a list of IValues");
-               return true;
-             }})
-        .pattern(
-            {"aten::split_with_sizes(Tensor(a) self, int[] split_sizes, int dim=0) -> (Tensor[])",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               add_split(ctx, n, args, true, false);
-               LOG_DEBUG("Converted split op into a list of IValues");
-               return true;
-             }})
-        .pattern(
-            {"aten::unbind.int(Tensor(a -> *) self, int dim=0) -> (Tensor[])",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               add_split(ctx, n, args, false, true);
-               LOG_DEBUG("Converted split op into a list of IValues");
-               return true;
-             }})
-        .pattern(
-            {"aten::masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto self = args[0].ITensorOrFreeze(ctx);
-               auto mask = args[1].ITensorOrFreeze(ctx);
-               mask = addPadding(ctx, n, mask, self->getDimensions().nbDims, false, true);
-               auto val = args[2].unwrapToScalar().to<float>();
-               auto val_t = tensor_to_const(ctx, torch::full(util::toVec(self->getDimensions()), val));
-
-               TORCHTRT_CHECK(
-                   util::broadcastable(self->getDimensions(), mask->getDimensions(), /*multidirectional=*/false),
-                   "Self and mask tensors are not broadcastable");
-
-               auto new_layer = ctx->net->addSelect(*mask, *val_t, *self);
-               TORCHTRT_CHECK(new_layer, "Unable to create layer for aten::masked_fill");
-
-               new_layer->setName(util::node_info(n).c_str());
-
-               auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], new_layer->getOutput(0));
-               LOG_DEBUG("Output shape: " << out_tensor->getDimensions());
-               return true;
-             }});
+        .pattern({"aten::split(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[])",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    add_split(ctx, n, args, true, false);
+                    LOG_DEBUG("Converted split op into a list of IValues");
+                    return true;
+                  }})
+        .pattern({"aten::split.sizes(Tensor(a -> *) self, int[] split_size, int dim=0) -> (Tensor[])",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    add_split(ctx, n, args, true, false);
+                    LOG_DEBUG("Converted split op into a list of IValues");
+                    return true;
+                  }})
+        .pattern({"aten::split.Tensor(Tensor(a) self, int split_size, int dim=0) -> (Tensor[])",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    add_split(ctx, n, args, false, false);
+                    LOG_DEBUG("Converted split op into a list of IValues");
+                    return true;
+                  }})
+        .pattern({"aten::split_with_sizes(Tensor(a) self, int[] split_sizes, int dim=0) -> (Tensor[])",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    add_split(ctx, n, args, true, false);
+                    LOG_DEBUG("Converted split op into a list of IValues");
+                    return true;
+                  }})
+        .pattern({"aten::unbind.int(Tensor(a -> *) self, int dim=0) -> (Tensor[])",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    add_split(ctx, n, args, false, true);
+                    LOG_DEBUG("Converted split op into a list of IValues");
+                    return true;
+                  }})
+        .pattern({"aten::masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto self = args[0].ITensorOrFreeze(ctx);
+                    auto mask = args[1].ITensorOrFreeze(ctx);
+                    mask = addPadding(ctx, n, mask, self->getDimensions().nbDims, false, true);
+                    auto val = args[2].unwrapToScalar().to<float>();
+                    auto val_t = tensor_to_const(ctx, torch::full(util::toVec(self->getDimensions()), val));
+
+                    TORCHTRT_CHECK(
+                        util::broadcastable(self->getDimensions(), mask->getDimensions(), /*multidirectional=*/false),
+                        "Self and mask tensors are not broadcastable");
+
+                    auto new_layer = ctx->net->addSelect(*mask, *val_t, *self);
+                    TORCHTRT_CHECK(new_layer, "Unable to create layer for aten::masked_fill");
+
+                    new_layer->setName(util::node_info(n).c_str());
+
+                    auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], new_layer->getOutput(0));
+                    LOG_DEBUG("Output shape: " << out_tensor->getDimensions());
+                    return true;
+                  }});

} // namespace
} // namespace impl
ERROR: Some files do not conform to style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to C++ style guidelines

@frank-wei frank-wei merged commit ec2cdfb into master Aug 5, 2022
@frank-wei frank-wei deleted the frank-wei-patch-1 branch August 12, 2022 18:30
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
cla signed component: api [C++] Issues re: C++ API component: api [Python] Issues re: Python API component: conversion Issues re: Conversion stage component: converters Issues re: Specific op converters component: core Issues re: The core compiler component: fx component: lowering Issues re: The lowering / preprocessing passes component: partitioning component: tests Issues re: Tests fx
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants