Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add filter_per_worker flag to data loaders #4873

Merged
merged 2 commits into from
Jun 28, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

## [2.0.5] - 2022-MM-DD
### Added
- Added a `filter_per_worker` argument to data loaders to allow filtering of data within sub-processes ([#4873](https://github.com/pyg-team/pytorch_geometric/pull/4873))
- Added a `NeighborLoader` benchmark script ([#4815](https://github.com/pyg-team/pytorch_geometric/pull/4815))
- Added support for `FeatureStore` and `GraphStore` in `NeighborLoader` ([#4817](https://github.com/pyg-team/pytorch_geometric/pull/4817), [#4851](https://github.com/pyg-team/pytorch_geometric/pull/4851), [#4854](https://github.com/pyg-team/pytorch_geometric/pull/4854), [#4856](https://github.com/pyg-team/pytorch_geometric/pull/4856), [#4857](https://github.com/pyg-team/pytorch_geometric/pull/4857))
- Added a `normalize` parameter to `dense_diff_pool` ([#4847](https://github.com/pyg-team/pytorch_geometric/pull/4847))
Expand Down
2 changes: 1 addition & 1 deletion torch_geometric/loader/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
from torch.utils.data.dataloader import _BaseDataLoaderIter


class DataLoaderIterator(object):
class DataLoaderIterator:
r"""A data loader iterator extended by a simple post transformation
function :meth:`transform_fn`. While the iterator may request items from
different sub-processes, :meth:`transform_fn` will always be executed in
Expand Down
27 changes: 23 additions & 4 deletions torch_geometric/loader/hgt_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,14 @@ class HGTLoader(torch.utils.data.DataLoader):
transform (Callable, optional): A function/transform that takes in
an a sampled mini-batch and returns a transformed version.
(default: :obj:`None`)
filter_per_worker (bool, optional): If set to :obj:`True`, will filter
the returning data in each worker's subprocess rather than in the
main process.
Setting this to :obj:`True` is generally not recommended:
(1) it may result in too many open file handles,
(2) it may slown down data loading,
(3) it requires operating on CPU tensors.
(default: :obj:`False`)
**kwargs (optional): Additional arguments of
:class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
:obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
Expand All @@ -87,6 +95,7 @@ def __init__(
num_samples: Union[List[int], Dict[NodeType, List[int]]],
input_nodes: Union[NodeType, Tuple[NodeType, Optional[Tensor]]],
transform: Callable = None,
filter_per_worker: bool = False,
**kwargs,
):
if 'collate_fn' in kwargs:
Expand All @@ -112,6 +121,7 @@ def __init__(
self.input_nodes = input_nodes
self.num_hops = max([len(v) for v in num_samples.values()])
self.transform = transform
self.filter_per_worker = filter_per_worker
self.sample_fn = torch.ops.torch_sparse.hgt_sample

# Convert the graph data into a suitable format for sampling.
Expand All @@ -120,7 +130,7 @@ def __init__(
self.colptr_dict, self.row_dict, self.perm_dict = to_hetero_csc(
data, device='cpu', share_memory=kwargs.get('num_workers', 0) > 0)

super().__init__(input_nodes[1].tolist(), collate_fn=self.sample,
super().__init__(input_nodes[1].tolist(), collate_fn=self.collate_fn,
**kwargs)

def sample(self, indices: List[int]) -> HeteroData:
Expand All @@ -134,8 +144,7 @@ def sample(self, indices: List[int]) -> HeteroData:
)
return node_dict, row_dict, col_dict, edge_dict, len(indices)

def transform_fn(self, out: Any) -> HeteroData:
# NOTE This function will always be executed on the main thread!
def filter_fn(self, out: Any) -> HeteroData:
node_dict, row_dict, col_dict, edge_dict, batch_size = out

data = filter_hetero_data(self.data, node_dict, row_dict, col_dict,
Expand All @@ -144,8 +153,18 @@ def transform_fn(self, out: Any) -> HeteroData:

return data if self.transform is None else self.transform(data)

def collate_fn(self, indices: List[int]) -> Any:
out = self.sample(indices)
if self.filter_per_worker:
# We execute `filter_fn` in the worker process.
out = self.filter_fn(out)
return out

def _get_iterator(self) -> Iterator:
return DataLoaderIterator(super()._get_iterator(), self.transform_fn)
if self.filter_per_worker:
return super()._get_iterator()
# We execute `filter_fn` in the main process.
return DataLoaderIterator(super()._get_iterator(), self.filter_fn)

def __repr__(self) -> str:
return f'{self.__class__.__name__}()'
29 changes: 24 additions & 5 deletions torch_geometric/loader/link_neighbor_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,6 +223,14 @@ class LinkNeighborLoader(torch.utils.data.DataLoader):
:obj:`edge_index` is sorted by column. This avoids internal
re-sorting of the data and can improve runtime and memory
efficiency. (default: :obj:`False`)
filter_per_worker (bool, optional): If set to :obj:`True`, will filter
the returning data in each worker's subprocess rather than in the
main process.
Setting this to :obj:`True` is generally not recommended:
(1) it may result in too many open file handles,
(2) it may slown down data loading,
(3) it requires operating on CPU tensors.
(default: :obj:`False`)
**kwargs (optional): Additional arguments of
:class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
:obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
Expand All @@ -238,6 +246,7 @@ def __init__(
neg_sampling_ratio: float = 0.0,
transform: Callable = None,
is_sorted: bool = False,
filter_per_worker: bool = False,
neighbor_sampler: Optional[LinkNeighborSampler] = None,
**kwargs,
):
Expand All @@ -255,9 +264,10 @@ def __init__(
self.edge_label = edge_label
self.replace = replace
self.directed = directed
self.neg_sampling_ratio = neg_sampling_ratio
self.transform = transform
self.filter_per_worker = filter_per_worker
self.neighbor_sampler = neighbor_sampler
self.neg_sampling_ratio = neg_sampling_ratio

edge_type, edge_label_index = get_edge_label_index(
data, edge_label_index)
Expand All @@ -275,10 +285,9 @@ def __init__(
)

super().__init__(Dataset(edge_label_index, edge_label),
collate_fn=self.neighbor_sampler, **kwargs)
collate_fn=self.collate_fn, **kwargs)

def transform_fn(self, out: Any) -> Union[Data, HeteroData]:
# NOTE This function will always be executed on the main thread!
def filter_fn(self, out: Any) -> Union[Data, HeteroData]:
if isinstance(self.data, Data):
node, row, col, edge, edge_label_index, edge_label = out
data = filter_data(self.data, node, row, col, edge,
Expand All @@ -300,8 +309,18 @@ def transform_fn(self, out: Any) -> Union[Data, HeteroData]:

return data if self.transform is None else self.transform(data)

def collate_fn(self, index: Union[List[int], Tensor]) -> Any:
out = self.neighbor_sampler(index)
if self.filter_per_worker:
# We execute `filter_fn` in the worker process.
out = self.filter_fn(out)
return out

def _get_iterator(self) -> Iterator:
return DataLoaderIterator(super()._get_iterator(), self.transform_fn)
if self.filter_per_worker:
return super()._get_iterator()
# We execute `filter_fn` in the main process.
return DataLoaderIterator(super()._get_iterator(), self.filter_fn)

def __repr__(self) -> str:
return f'{self.__class__.__name__}()'
Expand Down
28 changes: 23 additions & 5 deletions torch_geometric/loader/neighbor_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -370,6 +370,14 @@ class NeighborLoader(torch.utils.data.DataLoader):
:obj:`edge_index` is sorted by column. This avoids internal
re-sorting of the data and can improve runtime and memory
efficiency. (default: :obj:`False`)
filter_per_worker (bool, optional): If set to :obj:`True`, will filter
the returning data in each worker's subprocess rather than in the
main process.
Setting this to :obj:`True` is generally not recommended:
(1) it may result in too many open file handles,
(2) it may slown down data loading,
(3) it requires operating on CPU tensors.
(default: :obj:`False`)
**kwargs (optional): Additional arguments of
:class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
:obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
Expand All @@ -384,6 +392,7 @@ def __init__(
time_attr: Optional[str] = None,
transform: Callable = None,
is_sorted: bool = False,
filter_per_worker: bool = False,
neighbor_sampler: Optional[NeighborSampler] = None,
**kwargs,
):
Expand All @@ -401,6 +410,7 @@ def __init__(
self.replace = replace
self.directed = directed
self.transform = transform
self.filter_per_worker = filter_per_worker
self.neighbor_sampler = neighbor_sampler

node_type, input_nodes = get_input_nodes(data, input_nodes)
Expand All @@ -417,11 +427,9 @@ def __init__(
share_memory=kwargs.get('num_workers', 0) > 0,
)

super().__init__(input_nodes, collate_fn=self.neighbor_sampler,
**kwargs)
super().__init__(input_nodes, collate_fn=self.collate_fn, **kwargs)

def transform_fn(self, out: Any) -> Union[Data, HeteroData]:
# NOTE This function will always be executed on the main thread!
def filter_fn(self, out: Any) -> Union[Data, HeteroData]:
if isinstance(self.data, Data):
node, row, col, edge, batch_size = out
data = filter_data(self.data, node, row, col, edge,
Expand All @@ -445,8 +453,18 @@ def transform_fn(self, out: Any) -> Union[Data, HeteroData]:

return data if self.transform is None else self.transform(data)

def collate_fn(self, index: Union[List[int], Tensor]) -> Any:
out = self.neighbor_sampler(index)
if self.filter_per_worker:
# We execute `filter_fn` in the worker process.
out = self.filter_fn(out)
return out

def _get_iterator(self) -> Iterator:
return DataLoaderIterator(super()._get_iterator(), self.transform_fn)
if self.filter_per_worker:
return super()._get_iterator()
# We execute `filter_fn` in the main process.
return DataLoaderIterator(super()._get_iterator(), self.filter_fn)

def __repr__(self) -> str:
return f'{self.__class__.__name__}()'
Expand Down