Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

perf: Generalize the arg_sort fast path onto Column #20437

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
168 changes: 165 additions & 3 deletions crates/polars-core/src/frame/column/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -894,8 +894,167 @@ impl Column {
}

pub fn arg_sort(&self, options: SortOptions) -> IdxCa {
if self.is_empty() {
return IdxCa::from_vec(self.name().clone(), Vec::new());
}

if self.null_count() == self.len() {
// We might need to maintain order so just respect the descending parameter.
let values = if options.descending {
(0..self.len() as IdxSize).rev().collect()
} else {
(0..self.len() as IdxSize).collect()
};

return IdxCa::from_vec(self.name().clone(), values);
}

let is_sorted = Some(self.is_sorted_flag());
let Some(is_sorted) = is_sorted.filter(|v| !matches!(v, IsSorted::Not)) else {
return self.as_materialized_series().arg_sort(options);
};

// Fast path: the data is sorted.
let is_sorted_dsc = matches!(is_sorted, IsSorted::Descending);
let invert = options.descending != is_sorted_dsc;

let mut values = Vec::with_capacity(self.len());

#[inline(never)]
fn extend(
start: IdxSize,
end: IdxSize,
slf: &Column,
values: &mut Vec<IdxSize>,
is_only_nulls: bool,
invert: bool,
maintain_order: bool,
) {
debug_assert!(start <= end);
debug_assert!(start as usize <= slf.len());
debug_assert!(end as usize <= slf.len());

if !invert || is_only_nulls {
values.extend(start..end);
return;
}

// If we don't have to maintain order but we have to invert. Just flip it around.
if !maintain_order {
values.extend((start..end).rev());
return;
}

// If we want to maintain order but we also needs to invert, we need to invert
// per group of items.
//
// @NOTE: Since the column is sorted, arg_unique can also take a fast path and
// just do a single traversal.
let arg_unique = slf
.slice(start as i64, (end - start) as usize)
.arg_unique()
.unwrap();

assert!(!arg_unique.has_nulls());

let num_unique = arg_unique.len();

// Fast path: all items are unique.
if num_unique == (end - start) as usize {
values.extend((start..end).rev());
return;
}

if num_unique == 1 {
values.extend(start..end);
return;
}

let mut prev_idx = end - start;
for chunk in arg_unique.downcast_iter() {
for &idx in chunk.values().as_slice().iter().rev() {
values.extend(start + idx..start + prev_idx);
prev_idx = idx;
}
}
}
macro_rules! extend {
($start:expr, $end:expr) => {
extend!($start, $end, is_only_nulls = false);
};
($start:expr, $end:expr, is_only_nulls = $is_only_nulls:expr) => {
extend(
$start,
$end,
self,
&mut values,
$is_only_nulls,
invert,
options.maintain_order,
);
};
}

let length = self.len() as IdxSize;
let null_count = self.null_count() as IdxSize;

if null_count == 0 {
extend!(0, length);
} else {
let has_nulls_last = self.get(self.len() - 1).unwrap().is_null();
match (options.nulls_last, has_nulls_last) {
(true, true) => {
// Current: Nulls last, Wanted: Nulls last
extend!(0, length - null_count);
extend!(length - null_count, length, is_only_nulls = true);
},
(true, false) => {
// Current: Nulls first, Wanted: Nulls last
extend!(null_count, length);
extend!(0, null_count, is_only_nulls = true);
},
(false, true) => {
// Current: Nulls last, Wanted: Nulls first
extend!(length - null_count, length, is_only_nulls = true);
extend!(0, length - null_count);
},
(false, false) => {
// Current: Nulls first, Wanted: Nulls first
extend!(0, null_count, is_only_nulls = true);
extend!(null_count, length);
},
}
}

// @NOTE: This can theoretically be pushed into the previous operation but it is really
// worth it... probably not...
if let Some((limit, limit_dsc)) = options.limit {
let limit = limit.min(length);

if limit_dsc {
values = values.drain((length - limit) as usize..).collect();
} else {
values.truncate(limit as usize);
}
}

IdxCa::from_vec(self.name().clone(), values)
}

pub fn arg_sort_multiple(
&self,
by: &[Column],
options: &SortMultipleOptions,
) -> PolarsResult<IdxCa> {
// @scalar-opt
self.as_materialized_series().arg_sort(options)
self.as_materialized_series().arg_sort_multiple(by, options)
}

pub fn arg_unique(&self) -> PolarsResult<IdxCa> {
match self {
Column::Scalar(s) => Ok(IdxCa::new_vec(s.name().clone(), vec![0])),
_ => self.as_materialized_series().arg_unique(),
}
}

pub fn bit_repr(&self) -> Option<BitRepr> {
Expand Down Expand Up @@ -986,8 +1145,11 @@ impl Column {
}

pub fn is_sorted_flag(&self) -> IsSorted {
// @scalar-opt
self.as_materialized_series().is_sorted_flag()
match self {
Column::Series(s) => s.is_sorted_flag(),
Column::Partitioned(s) => s.partitions().is_sorted_flag(),
Column::Scalar(_) => IsSorted::Ascending,
}
}

pub fn unique(&self) -> PolarsResult<Column> {
Expand Down
2 changes: 1 addition & 1 deletion py-polars/tests/unit/dataframe/test_df.py
Original file line number Diff line number Diff line change
Expand Up @@ -1014,7 +1014,7 @@ def test_multiple_column_sort() -> None:
pl.DataFrame({"a": [3, 2, 1], "b": ["b", "a", "a"]}),
)
assert_frame_equal(
df.sort("b", descending=True),
df.sort("b", descending=True, maintain_order=True),
pl.DataFrame({"a": [3, 1, 2], "b": ["b", "a", "a"]}),
)
assert_frame_equal(
Expand Down
2 changes: 2 additions & 0 deletions py-polars/tests/unit/datatypes/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -825,6 +825,8 @@ def test_cat_preserve_lexical_ordering_on_concat() -> None:
assert df2["x"].dtype == dtype


# TODO: Bug see: https://github.com/pola-rs/polars/issues/20440
@pytest.mark.may_fail_auto_streaming
def test_cat_append_lexical_sorted_flag() -> None:
df = pl.DataFrame({"x": [0, 1, 1], "y": ["B", "B", "A"]}).with_columns(
pl.col("y").cast(pl.Categorical(ordering="lexical"))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,8 @@ def test_global_and_local(
yield


# @TODO: Bug, see https://github.com/pola-rs/polars/issues/20440
@pytest.mark.may_fail_auto_streaming
def test_categorical_lexical_sort() -> None:
df = pl.DataFrame(
{"cats": ["z", "z", "k", "a", "b"], "vals": [3, 1, 2, 2, 3]}
Expand Down
10 changes: 4 additions & 6 deletions py-polars/tests/unit/operations/test_interpolate_by.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,17 +105,15 @@ def test_interpolate_by_leading_nulls() -> None:
}
)
result = df.select(pl.col("values").interpolate_by("times"))
expected = pl.DataFrame(
{"values": [None, None, None, 1.0, 1.7999999999999998, 4.6, 5.0]}
)
expected = pl.DataFrame({"values": [None, None, None, 1.0, 1.8, 4.6, 5.0]})
assert_frame_equal(result, expected)
result = (
df.sort("times", descending=True)
df.sort("times", maintain_order=True, descending=True)
.with_columns(pl.col("values").interpolate_by("times"))
.sort("times")
.sort("times", maintain_order=True)
.drop("times")
)
assert_frame_equal(result, expected)
assert_frame_equal(result, expected, check_exact=False)


@pytest.mark.parametrize("dataset", ["floats", "dates"])
Expand Down
17 changes: 12 additions & 5 deletions py-polars/tests/unit/operations/test_join.py
Original file line number Diff line number Diff line change
Expand Up @@ -285,11 +285,18 @@ def test_join_on_cast() -> None:

df_b = pl.DataFrame({"a": [-2, -3, 3, 10]})

assert df_a.join(df_b, on=pl.col("a").cast(pl.Int64)).to_dict(as_series=False) == {
"index": [1, 2, 3, 5],
"a": [-2, 3, 3, 10],
"a_right": [-2, 3, 3, 10],
}
assert_frame_equal(
df_a.join(df_b, on=pl.col("a").cast(pl.Int64)),
pl.DataFrame(
{
"index": [1, 2, 3, 5],
"a": [-2, 3, 3, 10],
"a_right": [-2, 3, 3, 10],
}
),
check_row_order=False,
check_dtypes=False,
)
assert df_a.lazy().join(
df_b.lazy(), on=pl.col("a").cast(pl.Int64)
).collect().to_dict(as_series=False) == {
Expand Down
Loading
Loading