Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(python): Rename Utf8 data type to String, keep Utf8 as alias #13257

Merged
merged 7 commits into from
Dec 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/src/python/user-guide/expressions/casting.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,8 +61,8 @@
)

out = df.select(
pl.col("integers").cast(pl.Utf8),
pl.col("float").cast(pl.Utf8),
pl.col("integers").cast(pl.String),
pl.col("float").cast(pl.String),
pl.col("floats_as_string").cast(pl.Float64),
)
print(out)
Expand Down
4 changes: 2 additions & 2 deletions docs/src/python/user-guide/sql/intro.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,8 +65,8 @@

# --8<-- [start:execute_multiple_sources]
# Input data:
# products_masterdata.csv with schema {'product_id': Int64, 'product_name': Utf8}
# products_categories.json with schema {'product_id': Int64, 'category': Utf8}
# products_masterdata.csv with schema {'product_id': Int64, 'product_name': String}
# products_categories.json with schema {'product_id': Int64, 'category': String}
# sales_data is a Pandas DataFrame with schema {'product_id': Int64, 'sales': Int64}

ctx = pl.SQLContext(
Expand Down
6 changes: 3 additions & 3 deletions docs/user-guide/concepts/data-types/categoricals.md
Original file line number Diff line number Diff line change
Expand Up @@ -269,7 +269,7 @@ Polars will raise an `OutOfBounds` error when a value is encountered which is no
The following types of comparisons operators are allowed for categorical data:

- Categorical vs Categorical
- Categorical vs Utf8
- Categorical vs String

#### `Categorical` Type

Expand All @@ -282,7 +282,7 @@ For the `Categorical` type comparisons are valid if they have the same global ca
--8<-- "python/user-guide/concepts/data-types/categoricals.py:global_equality"
```

For `Categorical` vs `Utf8` comparisons Polars uses lexical ordering to determine the result:
For `Categorical` vs `String` comparisons Polars uses lexical ordering to determine the result:

{{code_block('user-guide/concepts/data-types/categoricals','str_compare_single',[])}}

Expand All @@ -306,7 +306,7 @@ For `Enum` type comparisons are valid if they have the same categories.
--8<-- "python/user-guide/concepts/data-types/categoricals.py:equality"
```

For `Enum` vs `Utf8` comparisons the order within the categories is used instead of lexical ordering. In order for a comparison to be valid all values in the `Utf8` column should be present in the `Enum` categories list.
For `Enum` vs `String` comparisons the order within the categories is used instead of lexical ordering. In order for a comparison to be valid all values in the `String` column should be present in the `Enum` categories list.

{{code_block('user-guide/concepts/data-types/categoricals','str_enum_compare_error',[])}}

Expand Down
4 changes: 2 additions & 2 deletions docs/user-guide/concepts/data-types/overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

Polars is entirely based on Arrow data types and backed by Arrow memory arrays. This makes data processing
cache-efficient and well-supported for Inter Process Communication. Most data types follow the exact implementation
from Arrow, with the exception of `Utf8` (this is actually `LargeUtf8`), `Categorical`, and `Object` (support is limited). The data types are:
from Arrow, with the exception of `String` (this is actually `LargeUtf8`), `Categorical`, and `Object` (support is limited). The data types are:

| Group | Type | Details |
| -------- | ------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
Expand All @@ -23,7 +23,7 @@ from Arrow, with the exception of `Utf8` (this is actually `LargeUtf8`), `Catego
| | `Duration` | A timedelta type, internally represented as microseconds. Created when subtracting `Date/Datetime`. |
| | `Time` | Time representation, internally represented as nanoseconds since midnight. |
| Other | `Boolean` | Boolean type effectively bit packed. |
| | `Utf8` | String data (this is actually Arrow `LargeUtf8` internally). |
| | `String` | String data (this is actually Arrow `LargeUtf8` internally). |
| | `Binary` | Store data as bytes. |
| | `Object` | A limited supported data type that can be any value. |
| | `Categorical` | A categorical encoding of a set of strings. |
Expand Down
2 changes: 1 addition & 1 deletion docs/user-guide/expressions/casting.md
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ In case the column contains a non-numerical value, Polars will throw a `ComputeE

## Booleans

Booleans can be expressed as either 1 (`True`) or 0 (`False`). It's possible to perform casting operations between a numerical `DataType` and a boolean, and vice versa. However, keep in mind that casting from a string (`Utf8`) to a boolean is not permitted.
Booleans can be expressed as either 1 (`True`) or 0 (`False`). It's possible to perform casting operations between a numerical `DataType` and a boolean, and vice versa. However, keep in mind that casting from a string (`String`) to a boolean is not permitted.

{{code_block('user-guide/expressions/casting','bool',['cast'])}}

Expand Down
10 changes: 5 additions & 5 deletions docs/user-guide/expressions/plugins.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,9 +60,9 @@ fn pig_latin_str(value: &str, output: &mut String) {
}
}

#[polars_expr(output_type=Utf8)]
#[polars_expr(output_type=String)]
fn pig_latinnify(inputs: &[Series]) -> PolarsResult<Series> {
let ca = inputs[0].utf8()?;
let ca = inputs[0].str()?;
let out: StringChunked = ca.apply_to_buffer(pig_latin_str);
Ok(out.into_series())
}
Expand Down Expand Up @@ -151,11 +151,11 @@ pub struct MyKwargs {
/// If you want to accept `kwargs`. You define a `kwargs` argument
/// on the second position in you plugin. You can provide any custom struct that is deserializable
/// with the pickle protocol (on the Rust side).
#[polars_expr(output_type=Utf8)]
#[polars_expr(output_type=String)]
fn append_kwargs(input: &[Series], kwargs: MyKwargs) -> PolarsResult<Series> {
let input = &input[0];
let input = input.cast(&DataType::Utf8)?;
let ca = input.utf8().unwrap();
let input = input.cast(&DataType::String)?;
let ca = input.str().unwrap();

Ok(ca
.apply_to_buffer(|val, buf| {
Expand Down
4 changes: 2 additions & 2 deletions docs/user-guide/expressions/strings.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# Strings

The following section discusses operations performed on `Utf8` strings, which are a frequently used `DataType` when working with `DataFrames`. However, processing strings can often be inefficient due to their unpredictable memory size, causing the CPU to access many random memory locations. To address this issue, Polars utilizes Arrow as its backend, which stores all strings in a contiguous block of memory. As a result, string traversal is cache-optimal and predictable for the CPU.
The following section discusses operations performed on `String` data, which is a frequently used `DataType` when working with `DataFrames`. However, processing strings can often be inefficient due to their unpredictable memory size, causing the CPU to access many random memory locations. To address this issue, Polars utilizes Arrow as its backend, which stores all strings in a contiguous block of memory. As a result, string traversal is cache-optimal and predictable for the CPU.

String processing functions are available in the `str` namespace.

##### Accessing the string namespace

The `str` namespace can be accessed through the `.str` attribute of a column with `Utf8` data type. In the following example, we create a column named `animal` and compute the length of each element in the column in terms of the number of bytes and the number of characters. If you are working with ASCII text, then the results of these two computations will be the same, and using `lengths` is recommended since it is faster.
The `str` namespace can be accessed through the `.str` attribute of a column with `String` data type. In the following example, we create a column named `animal` and compute the length of each element in the column in terms of the number of bytes and the number of characters. If you are working with ASCII text, then the results of these two computations will be the same, and using `lengths` is recommended since it is faster.

{{code_block('user-guide/expressions/strings','df',['str.len_bytes','str.len_chars'])}}

Expand Down
4 changes: 2 additions & 2 deletions docs/user-guide/expressions/user-defined-functions.md
Original file line number Diff line number Diff line change
Expand Up @@ -162,7 +162,7 @@ The mapping of Python types to Polars data types is as follows:
- `int` -> `Int64`
- `float` -> `Float64`
- `bool` -> `Boolean`
- `str` -> `Utf8`
- `str` -> `String`
- `list[tp]` -> `List[tp]` (where the inner type is inferred with the same rules)
- `dict[str, [tp]]` -> `struct`
- `Any` -> `object` (Prevent this at all times)
Expand All @@ -172,5 +172,5 @@ Rust types map as follows:
- `i32` or `i64` -> `Int64`
- `f32` or `f64` -> `Float64`
- `bool` -> `Boolean`
- `String` or `str` -> `Utf8`
- `String` or `str` -> `String`
- `Vec<tp>` -> `List[tp]` (where the inner type is inferred with the same rules)
2 changes: 1 addition & 1 deletion py-polars/docs/source/reference/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ Examples

pl.DataFrame(
data=["aaa", "bbb", "ccc", "ddd", "eee", "fff"],
columns=[("txt", pl.Utf8)],
columns=[("txt", pl.String)],
).split.by_alternate_rows()

# [┌─────┐ ┌─────┐
Expand Down
1 change: 1 addition & 0 deletions py-polars/docs/source/reference/datatypes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -59,5 +59,6 @@ Other
Enum
Null
Object
String
Utf8
Unknown
6 changes: 3 additions & 3 deletions py-polars/docs/source/reference/selectors.rst
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ Examples
"JJK": pl.Date,
"Lmn": pl.Duration,
"opp": pl.Datetime("ms"),
"qqR": pl.Utf8,
"qqR": pl.String,
},
)

Expand All @@ -73,7 +73,7 @@ Examples
"JJK": pl.Date,
"Lmn": pl.Duration,
"opp": pl.Datetime("ms"),
"qqR": pl.Utf8,
"qqR": pl.String,
}

# Select the INTERSECTION of temporal and column names that match "opp" OR "JJK"
Expand All @@ -98,7 +98,7 @@ Examples
"fgg": pl.Boolean,
"JJK": pl.Date,
"opp": pl.Datetime("ms"),
"qqR": pl.Utf8,
"qqR": pl.String,
}


Expand Down
2 changes: 2 additions & 0 deletions py-polars/polars/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@
List,
Null,
Object,
String,
Struct,
Time,
UInt8,
Expand Down Expand Up @@ -250,6 +251,7 @@
"List",
"Null",
"Object",
"String",
"Struct",
"Time",
"UInt16",
Expand Down
18 changes: 9 additions & 9 deletions py-polars/polars/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

import polars._reexport as pl
from polars import functions as F
from polars.datatypes import N_INFER_DEFAULT, Categorical, List, Object, Struct, Utf8
from polars.datatypes import N_INFER_DEFAULT, Categorical, List, Object, String, Struct
from polars.dependencies import pandas as pd
from polars.dependencies import pyarrow as pa
from polars.exceptions import NoDataError
Expand Down Expand Up @@ -152,7 +152,7 @@ def from_dicts(
>>> pl.from_dicts(
... data,
... schema=["a", "b", "c", "d"],
... schema_overrides={"c": pl.Float64, "d": pl.Utf8},
... schema_overrides={"c": pl.Float64, "d": pl.String},
... )
shape: (3, 4)
┌─────┬─────┬──────┬──────┐
Expand Down Expand Up @@ -286,15 +286,15 @@ def _from_dataframe_repr(m: re.Match[str]) -> DataFrame:
if coldata:
coldata.pop(idx)

# init cols as utf8 Series, handle "null" -> None, create schema from repr dtype
# init cols as String Series, handle "null" -> None, create schema from repr dtype
data = [
pl.Series([(None if v == "null" else v) for v in cd], dtype=Utf8)
pl.Series([(None if v == "null" else v) for v in cd], dtype=String)
for cd in coldata
]
schema = dict(zip(headers, (dtype_short_repr_to_dtype(d) for d in dtypes)))
if schema and data and (n_extend_cols := (len(schema) - len(data))) > 0:
empty_data = [None] * len(data[0])
data.extend((pl.Series(empty_data, dtype=Utf8)) for _ in range(n_extend_cols))
data.extend((pl.Series(empty_data, dtype=String)) for _ in range(n_extend_cols))
for dtype in set(schema.values()):
if dtype in (List, Struct, Object):
raise NotImplementedError(
Expand All @@ -306,10 +306,10 @@ def _from_dataframe_repr(m: re.Match[str]) -> DataFrame:
if no_dtypes:
if df.is_empty():
# if no dtypes *and* empty, default to string
return df.with_columns(F.all().cast(Utf8))
return df.with_columns(F.all().cast(String))
else:
# otherwise, take a trip through our CSV inference logic
if all(tp == Utf8 for tp in df.schema.values()):
if all(tp == String for tp in df.schema.values()):
buf = io.BytesIO()
df.write_csv(file=buf)
df = read_csv(buf, new_columns=df.columns, try_parse_dates=True)
Expand Down Expand Up @@ -347,10 +347,10 @@ def _from_series_repr(m: re.Match[str]) -> Series:
if not values:
return pl.Series(name=name, values=values, dtype=dtype)
else:
srs = pl.Series(name=name, values=values, dtype=Utf8)
srs = pl.Series(name=name, values=values, dtype=String)
if dtype is None:
return srs
elif dtype in (Categorical, Utf8):
elif dtype in (Categorical, String):
return srs.str.replace('^"(.*)"$', r"$1").cast(dtype)

return _cast_repr_strings_with_schema(
Expand Down
28 changes: 14 additions & 14 deletions py-polars/polars/dataframe/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,8 +43,8 @@
Float64,
Null,
Object,
String,
Unknown,
Utf8,
py_type_to_dtype,
)
from polars.dependencies import (
Expand Down Expand Up @@ -1228,7 +1228,7 @@ def dtypes(self) -> list[DataType]:
... }
... )
>>> df.dtypes
[Int64, Float64, Utf8]
[Int64, Float64, String]
>>> df
shape: (3, 3)
┌─────┬─────┬─────┐
Expand Down Expand Up @@ -1271,7 +1271,7 @@ def schema(self) -> OrderedDict[str, DataType]:
... }
... )
>>> df.schema
OrderedDict({'foo': Int64, 'bar': Float64, 'ham': Utf8})
OrderedDict({'foo': Int64, 'bar': Float64, 'ham': String})

"""
return OrderedDict(zip(self.columns, self.dtypes))
Expand Down Expand Up @@ -1719,7 +1719,7 @@ def __getitem__(

if isinstance(item, pl.Series):
dtype = item.dtype
if dtype == Utf8:
if dtype == String:
return self._from_pydf(self._df.select(item))
elif dtype.is_integer():
return self._take_with_series(item._pos_idxs(self.shape[0]))
Expand Down Expand Up @@ -2079,7 +2079,7 @@ def to_numpy(

Notes
-----
If you're attempting to convert Utf8 or Decimal to an array, you'll need to
If you're attempting to convert String or Decimal to an array, you'll need to
install `pyarrow`.

Examples
Expand Down Expand Up @@ -2123,7 +2123,7 @@ def to_numpy(
a = s.to_numpy(use_pyarrow=use_pyarrow)
arrays.append(
a.astype(str, copy=False)
if tp == Utf8 and not s.null_count()
if tp == String and not s.null_count()
else a
)

Expand Down Expand Up @@ -2309,15 +2309,15 @@ def to_init_repr(self, n: int = 1000) -> str:
... [
... pl.Series("foo", [1, 2, 3], dtype=pl.UInt8),
... pl.Series("bar", [6.0, 7.0, 8.0], dtype=pl.Float32),
... pl.Series("ham", ["a", "b", "c"], dtype=pl.Utf8),
... pl.Series("ham", ["a", "b", "c"], dtype=pl.String),
... ]
... )
>>> print(df.to_init_repr())
pl.DataFrame(
[
pl.Series("foo", [1, 2, 3], dtype=pl.UInt8),
pl.Series("bar", [6.0, 7.0, 8.0], dtype=pl.Float32),
pl.Series("ham", ['a', 'b', 'c'], dtype=pl.Utf8),
pl.Series("ham", ['a', 'b', 'c'], dtype=pl.String),
]
)

Expand Down Expand Up @@ -3848,7 +3848,7 @@ def estimated_size(self, unit: SizeUnit = "b") -> int | float:
... "y": [v / 1000 for v in range(1_000_000)],
... "z": [str(v) for v in range(1_000_000)],
... },
... schema=[("x", pl.UInt32), ("y", pl.Float64), ("z", pl.Utf8)],
... schema=[("x", pl.UInt32), ("y", pl.Float64), ("z", pl.String)],
... )
>>> df.estimated_size()
25888898
Expand Down Expand Up @@ -4267,7 +4267,7 @@ def glimpse(
schema = self.schema

def _parse_column(col_name: str, dtype: PolarsDataType) -> tuple[str, str, str]:
fn = repr if schema[col_name] == Utf8 else str
fn = repr if schema[col_name] == String else str
values = self[:max_n_values][col_name].to_list()
val_str = ", ".join(fn(v) for v in values) # type: ignore[operator]
if len(col_name) > max_colname_length:
Expand Down Expand Up @@ -6727,15 +6727,15 @@ def cast(

Cast all frame columns to the specified dtype:

>>> df.cast(pl.Utf8).to_dict(as_series=False)
>>> df.cast(pl.String).to_dict(as_series=False)
{'foo': ['1', '2', '3'],
'bar': ['6.0', '7.0', '8.0'],
'ham': ['2020-01-02', '2021-03-04', '2022-05-06']}

Use selectors to define the columns being cast:

>>> import polars.selectors as cs
>>> df.cast({cs.numeric(): pl.UInt32, cs.temporal(): pl.Utf8})
>>> df.cast({cs.numeric(): pl.UInt32, cs.temporal(): pl.String})
shape: (3, 3)
┌─────┬─────┬────────────┐
│ foo ┆ bar ┆ ham │
Expand Down Expand Up @@ -7089,7 +7089,7 @@ def explode(
----------
columns
Column names, expressions, or a selector defining them. The underlying
columns being exploded must be of List or Utf8 datatype.
columns being exploded must be of List or String datatype.
*more_columns
Additional names of columns to explode, specified as positional arguments.

Expand Down Expand Up @@ -9248,7 +9248,7 @@ def fold(self, operation: Callable[[Series, Series], Series]) -> Series:
An example of the supercast rules when applying an arithmetic operation on two
DataTypes are for instance:

- Int8 + Utf8 = Utf8
- Int8 + String = String
- Float32 + Int64 = Float32
- Float32 + Float64 = Float64

Expand Down
2 changes: 2 additions & 0 deletions py-polars/polars/datatypes/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
List,
Null,
Object,
String,
Struct,
TemporalType,
Time,
Expand Down Expand Up @@ -97,6 +98,7 @@
"List",
"Null",
"Object",
"String",
"Struct",
"TemporalType",
"Time",
Expand Down
Loading