We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Why there are two types of discriminator loss as follows: # pred_d_real = self.netD(self.var_ref) # pred_d_fake = self.netD(self.fake_H.detach()) # detach to avoid BP to G # l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True) # l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real), False) # l_d_total = (l_d_real + l_d_fake) / 2 # l_d_total.backward() pred_d_fake = self.netD(self.fake_H.detach()).detach() pred_d_real = self.netD(self.var_ref) l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True) * 0.5 l_d_real.backward() pred_d_fake = self.netD(self.fake_H.detach()) l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real.detach()), False) * 0.5 l_d_fake.backward()
# pred_d_real = self.netD(self.var_ref)
# pred_d_fake = self.netD(self.fake_H.detach()) # detach to avoid BP to G
# l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True)
# l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real), False)
# l_d_total = (l_d_real + l_d_fake) / 2
# l_d_total.backward()
pred_d_fake = self.netD(self.fake_H.detach()).detach()
pred_d_real = self.netD(self.var_ref)
l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True) * 0.5
l_d_real.backward()
pred_d_fake = self.netD(self.fake_H.detach())
l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real.detach()), False) * 0.5
l_d_fake.backward()
The text was updated successfully, but these errors were encountered:
The discriminator has two losses for real and fake samples, respectively~
Sorry, something went wrong.
[CodeCamp #83] Support Restormer model (#1503)
b13cd06
* Merge branch 'cndocs' of https://github.com/AlexZou14/mmediting into cndocs * Add Restormer * Add einops * Create test_restormer_net.py * Refactor deraining config * Update restormer_net.py * Refactor config * Update restormer_official_rain13k.py * Update deraining_test_config.py * Fix Restormer Readme * Fix runtime.txt * refactor configs * rename deblurring config * rename deblurring config * Fix config and Fix docstring * Update runtime.txt * fix typo * remove edit_dual_data_preprocessor * Fix test_restormer_net.py typo * Add denoising_real and fix config typo * Fix Some typo * Fix Typo * fix configs * fix dpdd dataset * fix readme * Fix Readme * Fix README_zh-CN * Fix Typo * support dual deblur and fix pad * fix ut * update metrics * Fix test_dual_restormer * fix ut * fix typo Co-authored-by: Z-Fran <1396925302@qq.com> Co-authored-by: Z-Fran <49083766+Z-Fran@users.noreply.github.com>
No branches or pull requests
Why there are two types of discriminator loss as follows:
# pred_d_real = self.netD(self.var_ref)
# pred_d_fake = self.netD(self.fake_H.detach()) # detach to avoid BP to G
# l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True)
# l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real), False)
# l_d_total = (l_d_real + l_d_fake) / 2
# l_d_total.backward()
pred_d_fake = self.netD(self.fake_H.detach()).detach()
pred_d_real = self.netD(self.var_ref)
l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True) * 0.5
l_d_real.backward()
pred_d_fake = self.netD(self.fake_H.detach())
l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real.detach()), False) * 0.5
l_d_fake.backward()
The text was updated successfully, but these errors were encountered: