Skip to content

C++ application to perform computer vision tasks using Nvidia Triton Server for model inference

License

Notifications You must be signed in to change notification settings

olibartfast/computer-vision-triton-cpp-client

Repository files navigation

C++ Triton Client for Computer Vision Models

This C++ application enables machine learning tasks, such as object detection and classification, using the Nvidia Triton Server. Triton manages multiple framework backends for streamlined model deployment.

Supported(Tested) Models

  • Object Detection: YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv9, YOLOv10, YOLO11, YOLO-NAS
  • Instance Segmentation: YOLOv5, YOLOv8, YOLO11
  • Classification: Torchvision API-based models, Tensorflow-Keras API(saved_model export)

Build Client Libraries

To build the client libraries, refer to the official Triton Inference Server client libraries.


Dependencies

Ensure the following dependencies are installed:

  • Nvidia Triton Inference Server (from NGC):
    docker pull nvcr.io/nvidia/tritonserver:24.09-py3
  • Triton client libraries: Tested on Release r24.09
  • Protobuf and gRPC++: Versions compatible with Triton
  • RapidJSON:
    apt install rapidjson-dev
  • libcurl:
    apt install libcurl4-openssl-dev
  • OpenCV 4: Tested version: 4.7.0

Build and Compile

To build and compile the application, follow these steps:

  1. Set the environment variable TritonClientBuild_DIR or update the CMakeLists.txt with the path to your installed Triton client libraries.

  2. Create a build directory:

    mkdir build
  3. Navigate to the build directory:

    cd build
  4. Run CMake to configure the build:

    cmake -DCMAKE_BUILD_TYPE=Release ..

    Optional flags:

    • -DSHOW_FRAME: Enable to display processed frames after inference.
    • -DWRITE_FRAME: Enable to write processed frames to disk.
  5. Build the application:

    cmake --build .

Tasks

Export Instructions


Notes

Ensure the model export versions match those supported by your Triton release. Check Triton releases here.


Deploying Models to Triton

To deploy models, set up a model repository following the Triton Model Repository schema. The config.pbtxt file is optional unless you're using the OpenVino backend, implementing an Ensemble pipeline, or passing custom inference parameters.

Example Model Repository Structure

<model_repository>/
    <model_name>/
        config.pbtxt
        <model_version>/
            <model_binary>

To start Triton Server, run:

#!/bin/bash
docker run --gpus=1 --rm \
  -p 8000:8000 -p 8001:8001 -p 8002:8002 \
  -v /full/path/to/model_repository:/models \
  nvcr.io/nvidia/tritonserver:<xx.yy>-py3 tritonserver \
  --model-repository=/models

Omit the --gpus flag if using the CPU version.

For more examples, check the Triton Inference Server tutorials.


Running Inference

Command-Line Inference on Video or Image

Use the following command to perform inference on a video or image:

./computer-vision-triton-cpp-client \
    --source=/path/to/source.format \
    --task_type=<task_type> \
    --model_type=<model_type> \
    --model=<model_name_folder_on_triton> \
    --labelsFile=/path/to/labels/coco.names \
    --protocol=<http or grpc> \
    --serverAddress=<triton-ip> \
    --port=<8000 for http, 8001 for grpc>

If the model has dynamic input sizes, use:

    --input_sizes="c w h" 

Placeholder Descriptions:

  • /path/to/source.format: Path to the input video or image file.
  • <task_type>: Type of computer vision task (detection, classification, or instance_segmentation).
  • <model_type>: Model type (e.g., yolov5, yolov8, yolo11, yoloseg, torchvision-classifier, tensorflow-classifier).
  • <model_name_folder_on_triton>: Name of the model folder on the Triton server.
  • /path/to/labels/coco.names: Path to the label file (e.g., COCO labels).
  • <http or grpc>: Communication protocol (http or grpc).
  • <triton-ip>: IP address of your Triton server.
  • <8000 for http, 8001 for grpc>: Port number.

To view all available parameters, run:

./computer-vision-triton-cpp-client --help

Running with Docker

Build the Docker Image

docker build --rm -t computer-vision-triton-cpp-client .

Run the Docker Container

docker run --rm \
  -v /path/to/host/data:/app/data \
  computer-vision-triton-cpp-client \
  --network host \
  --source=<pat_to_source_on_container>\
  --task_type=<task_type> \
  --model_type=<model_type> \
  --model=<model_name_folder_on_triton> \
  --labelsFile=<path_to_labels_on_container> \
  --protocol=<http or grpc> \
  --serverAddress=<triton-ip> \
  --port=<8000 for http, 8001 for grpc>
  • -v /path/to/host/data:/app/data: Maps host data to /app/data in the container for input/output.

View Output

Processed output is saved to the mapped directory on the host.


Demo

Real-time inference test (GPU Rtx 3060):


References


Feedback

  • Any feedback is greatly appreciated, if you have any suggestions, bug reports or questions don't hesitate to open an issue.

About

C++ application to perform computer vision tasks using Nvidia Triton Server for model inference

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published