-
Notifications
You must be signed in to change notification settings - Fork 232
/
image_client.cc
1120 lines (1022 loc) · 37.1 KB
/
image_client.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2020-2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <dirent.h>
#include <getopt.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <condition_variable>
#include <fstream>
#include <iostream>
#include <iterator>
#include <mutex>
#include <queue>
#include <string>
#include "grpc_client.h"
#include "http_client.h"
#include "json_utils.h"
#include <opencv2/core/version.hpp>
#if CV_MAJOR_VERSION == 2
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#elif CV_MAJOR_VERSION >= 3
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#endif
#if CV_MAJOR_VERSION == 4
#define GET_TRANSFORMATION_CODE(x) cv::COLOR_##x
#else
#define GET_TRANSFORMATION_CODE(x) CV_##x
#endif
namespace tc = triton::client;
namespace {
enum ScaleType { NONE = 0, VGG = 1, INCEPTION = 2 };
enum ProtocolType { HTTP = 0, GRPC = 1 };
struct ModelInfo {
std::string output_name_;
std::string input_name_;
std::string input_datatype_;
// The shape of the input
int input_c_;
int input_h_;
int input_w_;
// The format of the input
std::string input_format_;
int type1_;
int type3_;
int max_batch_size_;
};
void
Preprocess(
const cv::Mat& img, const std::string& format, int img_type1, int img_type3,
size_t img_channels, const cv::Size& img_size, const ScaleType scale,
std::vector<uint8_t>* input_data)
{
// Image channels are in BGR order. Currently model configuration
// data doesn't provide any information as to the expected channel
// orderings (like RGB, BGR). We are going to assume that RGB is the
// most likely ordering and so change the channels to that ordering.
cv::Mat sample;
if ((img.channels() == 3) && (img_channels == 1)) {
cv::cvtColor(img, sample, GET_TRANSFORMATION_CODE(BGR2GRAY));
} else if ((img.channels() == 4) && (img_channels == 1)) {
cv::cvtColor(img, sample, GET_TRANSFORMATION_CODE(BGRA2GRAY));
} else if ((img.channels() == 3) && (img_channels == 3)) {
cv::cvtColor(img, sample, GET_TRANSFORMATION_CODE(BGR2RGB));
} else if ((img.channels() == 4) && (img_channels == 3)) {
cv::cvtColor(img, sample, GET_TRANSFORMATION_CODE(BGRA2RGB));
} else if ((img.channels() == 1) && (img_channels == 3)) {
cv::cvtColor(img, sample, GET_TRANSFORMATION_CODE(GRAY2RGB));
} else {
std::cerr << "unexpected number of channels " << img.channels()
<< " in input image, model expects " << img_channels << "."
<< std::endl;
exit(1);
}
cv::Mat sample_resized;
if (sample.size() != img_size) {
cv::resize(sample, sample_resized, img_size);
} else {
sample_resized = sample;
}
cv::Mat sample_type;
sample_resized.convertTo(
sample_type, (img_channels == 3) ? img_type3 : img_type1);
cv::Mat sample_final;
if (scale == ScaleType::INCEPTION) {
if (img_channels == 1) {
sample_final = sample_type.mul(cv::Scalar(1 / 127.5));
sample_final = sample_final - cv::Scalar(1.0);
} else {
sample_final =
sample_type.mul(cv::Scalar(1 / 127.5, 1 / 127.5, 1 / 127.5));
sample_final = sample_final - cv::Scalar(1.0, 1.0, 1.0);
}
} else if (scale == ScaleType::VGG) {
if (img_channels == 1) {
sample_final = sample_type - cv::Scalar(128);
} else {
sample_final = sample_type - cv::Scalar(123, 117, 104);
}
} else {
sample_final = sample_type;
}
// Allocate a buffer to hold all image elements.
size_t img_byte_size = sample_final.total() * sample_final.elemSize();
size_t pos = 0;
input_data->resize(img_byte_size);
// For NHWC format Mat is already in the correct order but need to
// handle both cases of data being contigious or not.
if (format.compare("FORMAT_NHWC") == 0) {
if (sample_final.isContinuous()) {
memcpy(&((*input_data)[0]), sample_final.datastart, img_byte_size);
pos = img_byte_size;
} else {
size_t row_byte_size = sample_final.cols * sample_final.elemSize();
for (int r = 0; r < sample_final.rows; ++r) {
memcpy(
&((*input_data)[pos]), sample_final.ptr<uint8_t>(r), row_byte_size);
pos += row_byte_size;
}
}
} else {
// (format.compare("FORMAT_NCHW") == 0)
//
// For CHW formats must split out each channel from the matrix and
// order them as BBBB...GGGG...RRRR. To do this split the channels
// of the image directly into 'input_data'. The BGR channels are
// backed by the 'input_data' vector so that ends up with CHW
// order of the data.
std::vector<cv::Mat> input_bgr_channels;
for (size_t i = 0; i < img_channels; ++i) {
input_bgr_channels.emplace_back(
img_size.height, img_size.width, img_type1, &((*input_data)[pos]));
pos += input_bgr_channels.back().total() *
input_bgr_channels.back().elemSize();
}
cv::split(sample_final, input_bgr_channels);
}
if (pos != img_byte_size) {
std::cerr << "unexpected total size of channels " << pos << ", expecting "
<< img_byte_size << std::endl;
exit(1);
}
}
void
Postprocess(
const std::unique_ptr<tc::InferResult> result,
const std::vector<std::string>& filenames, const size_t batch_size,
const std::string& output_name, const size_t topk, const bool batching)
{
if (!result->RequestStatus().IsOk()) {
std::cerr << "inference failed with error: " << result->RequestStatus()
<< std::endl;
exit(1);
}
if (filenames.size() != batch_size) {
std::cerr << "expected " << batch_size << " filenames, got "
<< filenames.size() << std::endl;
exit(1);
}
// Get and validate the shape and datatype
std::vector<int64_t> shape;
tc::Error err = result->Shape(output_name, &shape);
if (!err.IsOk()) {
std::cerr << "unable to get shape for " << output_name << std::endl;
exit(1);
}
// Validate shape. Special handling for non-batch model
if (!batching) {
if ((shape.size() != 1) || (shape[0] != (int)topk)) {
std::cerr << "received incorrect shape for " << output_name << std::endl;
exit(1);
}
} else {
if ((shape.size() != 2) || (shape[0] != (int)batch_size) ||
(shape[1] != (int)topk)) {
std::cerr << "received incorrect shape for " << output_name << std::endl;
exit(1);
}
}
std::string datatype;
err = result->Datatype(output_name, &datatype);
if (!err.IsOk()) {
std::cerr << "unable to get datatype for " << output_name << std::endl;
exit(1);
}
// Validate datatype
if (datatype.compare("BYTES") != 0) {
std::cerr << "received incorrect datatype for " << output_name << ": "
<< datatype << std::endl;
exit(1);
}
std::vector<std::string> result_data;
err = result->StringData(output_name, &result_data);
if (!err.IsOk()) {
std::cerr << "unable to get data for " << output_name << std::endl;
exit(1);
}
if (result_data.size() != (topk * batch_size)) {
std::cerr << "unexpected number of strings in the result, expected "
<< (topk * batch_size) << ", got " << result_data.size()
<< std::endl;
exit(1);
}
size_t index = 0;
for (size_t b = 0; b < batch_size; ++b) {
std::cout << "Image '" << filenames[b] << "':" << std::endl;
for (size_t c = 0; c < topk; ++c) {
std::istringstream is(result_data[index]);
int count = 0;
std::string token;
while (getline(is, token, ':')) {
if (count == 0) {
std::cout << " " << token;
} else if (count == 1) {
std::cout << " (" << token << ")";
} else if (count == 2) {
std::cout << " = " << token;
}
count++;
}
std::cout << std::endl;
index++;
}
}
}
void
Usage(char** argv, const std::string& msg = std::string())
{
if (!msg.empty()) {
std::cerr << "error: " << msg << std::endl;
}
std::cerr << "Usage: " << argv[0]
<< " [options] <image filename / image folder>" << std::endl;
std::cerr << " Note that image folder should only contain image files."
<< std::endl;
std::cerr << "\t-v" << std::endl;
std::cerr << "\t-a" << std::endl;
std::cerr << "\t--streaming" << std::endl;
std::cerr << "\t-b <batch size>" << std::endl;
std::cerr << "\t-c <topk>" << std::endl;
std::cerr << "\t-s <NONE|INCEPTION|VGG>" << std::endl;
std::cerr << "\t-p <proprocessed output filename>" << std::endl;
std::cerr << "\t-m <model name>" << std::endl;
std::cerr << "\t-x <model version>" << std::endl;
std::cerr << "\t-u <URL for inference service>" << std::endl;
std::cerr << "\t-i <Protocol used to communicate with inference service>"
<< std::endl;
std::cerr << "\t-H <HTTP header>" << std::endl;
std::cerr << std::endl;
std::cerr << "If -a is specified then asynchronous client API will be used. "
<< "Default is to use the synchronous API." << std::endl;
std::cerr << "The --streaming flag is only valid with gRPC protocol."
<< std::endl;
std::cerr
<< "For -b, a single image will be replicated and sent in a batch"
<< std::endl
<< " of the specified size. A directory of images will be grouped"
<< std::endl
<< " into batches. Default is 1." << std::endl;
std::cerr << "For -c, the <topk> classes will be returned, default is 1."
<< std::endl;
std::cerr << "For -s, specify the type of pre-processing scaling that"
<< std::endl
<< " should be performed on the image, default is NONE."
<< std::endl
<< " INCEPTION: scale each pixel RGB value to [-1.0, 1.0)."
<< std::endl
<< " VGG: subtract mean BGR value (123, 117, 104) from"
<< std::endl
<< " each pixel." << std::endl;
std::cerr
<< "If -x is not specified the most recent version (that is, the highest "
<< "numbered version) of the model will be used." << std::endl;
std::cerr << "For -p, it generates file only if image file is specified."
<< std::endl;
std::cerr << "For -u, the default server URL is localhost:8000." << std::endl;
std::cerr << "For -i, available protocols are gRPC and HTTP. Default is HTTP."
<< std::endl;
std::cerr
<< "For -H, the header will be added to HTTP requests (ignored for GRPC "
"requests). The header must be specified as 'Header:Value'. -H may be "
"specified multiple times to add multiple headers."
<< std::endl;
std::cerr << std::endl;
exit(1);
}
ScaleType
ParseScale(const std::string& str)
{
if (str == "NONE") {
return ScaleType::NONE;
} else if (str == "INCEPTION") {
return ScaleType::INCEPTION;
} else if (str == "VGG") {
return ScaleType::VGG;
}
std::cerr << "unexpected scale type \"" << str
<< "\", expecting NONE, INCEPTION or VGG" << std::endl;
exit(1);
return ScaleType::NONE;
}
ProtocolType
ParseProtocol(const std::string& str)
{
std::string protocol(str);
std::transform(protocol.begin(), protocol.end(), protocol.begin(), ::tolower);
if (protocol == "http") {
return ProtocolType::HTTP;
} else if (protocol == "grpc") {
return ProtocolType::GRPC;
}
std::cerr << "unexpected protocol type \"" << str
<< "\", expecting HTTP or gRPC" << std::endl;
exit(1);
return ProtocolType::HTTP;
}
bool
ParseType(const std::string& dtype, int* type1, int* type3)
{
if (dtype.compare("UINT8") == 0) {
*type1 = CV_8UC1;
*type3 = CV_8UC3;
} else if (dtype.compare("INT8") == 0) {
*type1 = CV_8SC1;
*type3 = CV_8SC3;
} else if (dtype.compare("UINT16") == 0) {
*type1 = CV_16UC1;
*type3 = CV_16UC3;
} else if (dtype.compare("INT16") == 0) {
*type1 = CV_16SC1;
*type3 = CV_16SC3;
} else if (dtype.compare("INT32") == 0) {
*type1 = CV_32SC1;
*type3 = CV_32SC3;
} else if (dtype.compare("FP32") == 0) {
*type1 = CV_32FC1;
*type3 = CV_32FC3;
} else if (dtype.compare("FP64") == 0) {
*type1 = CV_64FC1;
*type3 = CV_64FC3;
} else {
return false;
}
return true;
}
void
ParseModelGrpc(
const inference::ModelMetadataResponse& model_metadata,
const inference::ModelConfigResponse& model_config, const size_t batch_size,
ModelInfo* model_info)
{
if (model_metadata.inputs().size() != 1) {
std::cerr << "expecting 1 input, got " << model_metadata.inputs().size()
<< std::endl;
exit(1);
}
if (model_metadata.outputs().size() != 1) {
std::cerr << "expecting 1 output, got " << model_metadata.outputs().size()
<< std::endl;
exit(1);
}
if (model_config.config().input().size() != 1) {
std::cerr << "expecting 1 input in model configuration, got "
<< model_config.config().input().size() << std::endl;
exit(1);
}
auto input_metadata = model_metadata.inputs(0);
auto input_config = model_config.config().input(0);
auto output_metadata = model_metadata.outputs(0);
if (output_metadata.datatype().compare("FP32") != 0) {
std::cerr << "expecting output datatype to be FP32, model '"
<< model_metadata.name() << "' output type is '"
<< output_metadata.datatype() << "'" << std::endl;
exit(1);
}
model_info->max_batch_size_ = model_config.config().max_batch_size();
// Model specifying maximum batch size of 0 indicates that batching
// is not supported and so the input tensors do not expect a "N"
// dimension (and 'batch_size' should be 1 so that only a single
// image instance is inferred at a time).
if (model_info->max_batch_size_ == 0) {
if (batch_size != 1) {
std::cerr << "batching not supported for model \""
<< model_metadata.name() << "\"" << std::endl;
exit(1);
}
} else {
// model_info->max_batch_size_ > 0
if (batch_size > (size_t)model_info->max_batch_size_) {
std::cerr << "expecting batch size <= " << model_info->max_batch_size_
<< " for model '" << model_metadata.name() << "'" << std::endl;
exit(1);
}
}
// Output is expected to be a vector. But allow any number of
// dimensions as long as all but 1 is size 1 (e.g. { 10 }, { 1, 10
// }, { 10, 1, 1 } are all ok).
bool output_batch_dim = (model_info->max_batch_size_ > 0);
size_t non_one_cnt = 0;
for (const auto dim : output_metadata.shape()) {
if (output_batch_dim) {
output_batch_dim = false;
} else if (dim == -1) {
std::cerr << "variable-size dimension in model output not supported"
<< std::endl;
exit(1);
} else if (dim > 1) {
non_one_cnt += 1;
if (non_one_cnt > 1) {
std::cerr << "expecting model output to be a vector" << std::endl;
exit(1);
}
}
}
// Model input must have 3 dims, either CHW or HWC (not counting the
// batch dimension), either CHW or HWC
const bool input_batch_dim = (model_info->max_batch_size_ > 0);
const int expected_input_dims = 3 + (input_batch_dim ? 1 : 0);
if (input_metadata.shape().size() != expected_input_dims) {
std::cerr << "expecting input to have " << expected_input_dims
<< " dimensions, model '" << model_metadata.name()
<< "' input has " << input_metadata.shape().size() << std::endl;
exit(1);
}
if ((input_config.format() != inference::ModelInput::FORMAT_NCHW) &&
(input_config.format() != inference::ModelInput::FORMAT_NHWC)) {
std::cerr
<< "unexpected input format "
<< inference::ModelInput_Format_Name(input_config.format())
<< ", expecting "
<< inference::ModelInput_Format_Name(inference::ModelInput::FORMAT_NHWC)
<< " or "
<< inference::ModelInput_Format_Name(inference::ModelInput::FORMAT_NCHW)
<< std::endl;
exit(1);
}
model_info->output_name_ = output_metadata.name();
model_info->input_name_ = input_metadata.name();
model_info->input_datatype_ = input_metadata.datatype();
if (input_config.format() == inference::ModelInput::FORMAT_NHWC) {
model_info->input_format_ = "FORMAT_NHWC";
model_info->input_h_ = input_metadata.shape(input_batch_dim ? 1 : 0);
model_info->input_w_ = input_metadata.shape(input_batch_dim ? 2 : 1);
model_info->input_c_ = input_metadata.shape(input_batch_dim ? 3 : 2);
} else {
model_info->input_format_ = "FORMAT_NCHW";
model_info->input_c_ = input_metadata.shape(input_batch_dim ? 1 : 0);
model_info->input_h_ = input_metadata.shape(input_batch_dim ? 2 : 1);
model_info->input_w_ = input_metadata.shape(input_batch_dim ? 3 : 2);
}
if (!ParseType(
model_info->input_datatype_, &(model_info->type1_),
&(model_info->type3_))) {
std::cerr << "unexpected input datatype '" << model_info->input_datatype_
<< "' for model \"" << model_metadata.name() << std::endl;
exit(1);
}
}
void
ParseModelHttp(
const rapidjson::Document& model_metadata,
const rapidjson::Document& model_config, const size_t batch_size,
ModelInfo* model_info)
{
const auto& input_itr = model_metadata.FindMember("inputs");
size_t input_count = 0;
if (input_itr != model_metadata.MemberEnd()) {
input_count = input_itr->value.Size();
}
if (input_count != 1) {
std::cerr << "expecting 1 input, got " << input_count << std::endl;
exit(1);
}
const auto& output_itr = model_metadata.FindMember("outputs");
size_t output_count = 0;
if (output_itr != model_metadata.MemberEnd()) {
output_count = output_itr->value.Size();
}
if (output_count != 1) {
std::cerr << "expecting 1 output, got " << output_count << std::endl;
exit(1);
}
const auto& input_config_itr = model_config.FindMember("input");
input_count = 0;
if (input_config_itr != model_config.MemberEnd()) {
input_count = input_config_itr->value.Size();
}
if (input_count != 1) {
std::cerr << "expecting 1 input in model configuration, got " << input_count
<< std::endl;
exit(1);
}
const auto& input_metadata = *input_itr->value.Begin();
const auto& input_config = *input_config_itr->value.Begin();
const auto& output_metadata = *output_itr->value.Begin();
const auto& output_dtype_itr = output_metadata.FindMember("datatype");
if (output_dtype_itr == output_metadata.MemberEnd()) {
std::cerr << "output missing datatype in the metadata for model'"
<< model_metadata["name"].GetString() << "'" << std::endl;
exit(1);
}
auto datatype = std::string(
output_dtype_itr->value.GetString(),
output_dtype_itr->value.GetStringLength());
if (datatype.compare("FP32") != 0) {
std::cerr << "expecting output datatype to be FP32, model '"
<< model_metadata["name"].GetString() << "' output type is '"
<< datatype << "'" << std::endl;
exit(1);
}
int max_batch_size = 0;
const auto bs_itr = model_config.FindMember("max_batch_size");
if (bs_itr != model_config.MemberEnd()) {
max_batch_size = bs_itr->value.GetUint();
}
model_info->max_batch_size_ = max_batch_size;
// Model specifying maximum batch size of 0 indicates that batching
// is not supported and so the input tensors do not expect a "N"
// dimension (and 'batch_size' should be 1 so that only a single
// image instance is inferred at a time).
if (max_batch_size == 0) {
if (batch_size != 1) {
std::cerr << "batching not supported for model '"
<< model_metadata["name"].GetString() << "'" << std::endl;
exit(1);
}
} else {
// max_batch_size > 0
if (batch_size > (size_t)max_batch_size) {
std::cerr << "expecting batch size <= " << max_batch_size
<< " for model '" << model_metadata["name"].GetString() << "'"
<< std::endl;
exit(1);
}
}
// Output is expected to be a vector. But allow any number of
// dimensions as long as all but 1 is size 1 (e.g. { 10 }, { 1, 10
// }, { 10, 1, 1 } are all ok).
bool output_batch_dim = (max_batch_size > 0);
size_t non_one_cnt = 0;
const auto output_shape_itr = output_metadata.FindMember("shape");
if (output_shape_itr != output_metadata.MemberEnd()) {
const rapidjson::Value& shape_json = output_shape_itr->value;
for (rapidjson::SizeType i = 0; i < shape_json.Size(); i++) {
if (output_batch_dim) {
output_batch_dim = false;
} else if (shape_json[i].GetInt() == -1) {
std::cerr << "variable-size dimension in model output not supported"
<< std::endl;
exit(1);
} else if (shape_json[i].GetInt() > 1) {
non_one_cnt += 1;
if (non_one_cnt > 1) {
std::cerr << "expecting model output to be a vector" << std::endl;
exit(1);
}
}
}
} else {
std::cerr << "output missing shape in the metadata for model'"
<< model_metadata["name"].GetString() << "'" << std::endl;
exit(1);
}
// Model input must have 3 dims, either CHW or HWC (not counting the
// batch dimension), either CHW or HWC
const bool input_batch_dim = (max_batch_size > 0);
const size_t expected_input_dims = 3 + (input_batch_dim ? 1 : 0);
const auto input_shape_itr = input_metadata.FindMember("shape");
if (input_shape_itr != input_metadata.MemberEnd()) {
if (input_shape_itr->value.Size() != expected_input_dims) {
std::cerr << "expecting input to have " << expected_input_dims
<< " dimensions, model '" << model_metadata["name"].GetString()
<< "' input has " << input_shape_itr->value.Size() << std::endl;
exit(1);
}
} else {
std::cerr << "input missing shape in the metadata for model'"
<< model_metadata["name"].GetString() << "'" << std::endl;
exit(1);
}
model_info->input_format_ = std::string(
input_config["format"].GetString(),
input_config["format"].GetStringLength());
if ((model_info->input_format_.compare("FORMAT_NCHW") != 0) &&
(model_info->input_format_.compare("FORMAT_NHWC") != 0)) {
std::cerr << "unexpected input format " << model_info->input_format_
<< ", expecting FORMAT_NCHW or FORMAT_NHWC" << std::endl;
exit(1);
}
model_info->output_name_ = std::string(
output_metadata["name"].GetString(),
output_metadata["name"].GetStringLength());
model_info->input_name_ = std::string(
input_metadata["name"].GetString(),
input_metadata["name"].GetStringLength());
model_info->input_datatype_ = std::string(
input_metadata["datatype"].GetString(),
input_metadata["datatype"].GetStringLength());
if (model_info->input_format_.compare("FORMAT_NHWC") == 0) {
model_info->input_h_ =
input_shape_itr->value[input_batch_dim ? 1 : 0].GetInt();
model_info->input_w_ =
input_shape_itr->value[input_batch_dim ? 2 : 1].GetInt();
model_info->input_c_ =
input_shape_itr->value[input_batch_dim ? 3 : 2].GetInt();
} else {
model_info->input_c_ =
input_shape_itr->value[input_batch_dim ? 1 : 0].GetInt();
model_info->input_h_ =
input_shape_itr->value[input_batch_dim ? 2 : 1].GetInt();
model_info->input_w_ =
input_shape_itr->value[input_batch_dim ? 3 : 2].GetInt();
}
if (!ParseType(
model_info->input_datatype_, &(model_info->type1_),
&(model_info->type3_))) {
std::cerr << "unexpected input datatype '" << model_info->input_datatype_
<< "' for model \"" << model_metadata["name"].GetString()
<< std::endl;
exit(1);
}
}
void
FileToInputData(
const std::string& filename, size_t c, size_t h, size_t w,
const std::string& format, int type1, int type3, ScaleType scale,
std::vector<uint8_t>* input_data)
{
// Load the specified image.
std::ifstream file(filename);
std::vector<char> data;
file >> std::noskipws;
std::copy(
std::istream_iterator<char>(file), std::istream_iterator<char>(),
std::back_inserter(data));
if (data.empty()) {
std::cerr << "error: unable to read image file " << filename << std::endl;
exit(1);
}
cv::Mat img = imdecode(cv::Mat(data), 1);
if (img.empty()) {
std::cerr << "error: unable to decode image " << filename << std::endl;
exit(1);
}
// Pre-process the image to match input size expected by the model.
Preprocess(img, format, type1, type3, c, cv::Size(w, h), scale, input_data);
}
union TritonClient {
TritonClient()
{
new (&http_client_) std::unique_ptr<tc::InferenceServerHttpClient>{};
}
~TritonClient() {}
std::unique_ptr<tc::InferenceServerHttpClient> http_client_;
std::unique_ptr<tc::InferenceServerGrpcClient> grpc_client_;
};
} // namespace
int
main(int argc, char** argv)
{
bool verbose = false;
bool async = false;
bool streaming = false;
int batch_size = 1;
int topk = 1;
ScaleType scale = ScaleType::NONE;
std::string preprocess_output_filename;
std::string model_name;
std::string model_version = "";
std::string url("localhost:8000");
ProtocolType protocol = ProtocolType::HTTP;
tc::Headers http_headers;
static struct option long_options[] = {{"streaming", 0, 0, 0}, {0, 0, 0, 0}};
// Parse commandline...
int opt;
while ((opt = getopt_long(
argc, argv, "vau:m:x:b:c:s:p:i:H:", long_options, NULL)) != -1) {
switch (opt) {
case 0:
streaming = true;
break;
case 'v':
verbose = true;
break;
case 'a':
async = true;
break;
case 'u':
url = optarg;
break;
case 'm':
model_name = optarg;
break;
case 'x':
model_version = optarg;
break;
case 'b':
batch_size = std::atoi(optarg);
break;
case 'c':
topk = std::atoi(optarg);
break;
case 's':
scale = ParseScale(optarg);
break;
case 'p':
preprocess_output_filename = optarg;
break;
case 'i':
protocol = ParseProtocol(optarg);
break;
case 'H': {
std::string arg = optarg;
std::string header = arg.substr(0, arg.find(":"));
http_headers[header] = arg.substr(header.size() + 1);
break;
}
case '?':
Usage(argv);
break;
}
}
if (model_name.empty()) {
Usage(argv, "-m flag must be specified");
}
if (batch_size <= 0) {
Usage(argv, "batch size must be > 0");
}
if (topk <= 0) {
Usage(argv, "topk must be > 0");
}
if (optind >= argc) {
Usage(argv, "image file or image folder must be specified");
}
if (streaming && (protocol != ProtocolType::GRPC)) {
Usage(argv, "Streaming is only allowed with gRPC protocol");
}
if (streaming && (!async)) {
Usage(argv, "Only async operation is supported in streaming");
}
if (!http_headers.empty() && (protocol != ProtocolType::HTTP)) {
std::cerr << "WARNING: HTTP headers specified with -H are ignored when "
"using non-HTTP protocol."
<< std::endl;
}
// Create the inference client for the server. From it
// extract and validate that the model meets the requirements for
// image classification.
TritonClient triton_client;
tc::Error err;
if (protocol == ProtocolType::HTTP) {
err = tc::InferenceServerHttpClient::Create(
&triton_client.http_client_, url, verbose);
} else {
err = tc::InferenceServerGrpcClient::Create(
&triton_client.grpc_client_, url, verbose);
}
if (!err.IsOk()) {
std::cerr << "error: unable to create client for inference: " << err
<< std::endl;
exit(1);
}
ModelInfo model_info;
if (protocol == ProtocolType::HTTP) {
std::string model_metadata;
err = triton_client.http_client_->ModelMetadata(
&model_metadata, model_name, model_version, http_headers);
if (!err.IsOk()) {
std::cerr << "error: failed to get model metadata: " << err << std::endl;
}
rapidjson::Document model_metadata_json;
err = tc::ParseJson(&model_metadata_json, model_metadata);
if (!err.IsOk()) {
std::cerr << "error: failed to parse model metadata: " << err
<< std::endl;
}
std::string model_config;
err = triton_client.http_client_->ModelConfig(
&model_config, model_name, model_version, http_headers);
if (!err.IsOk()) {
std::cerr << "error: failed to get model config: " << err << std::endl;
}
rapidjson::Document model_config_json;
err = tc::ParseJson(&model_config_json, model_config);
if (!err.IsOk()) {
std::cerr << "error: failed to parse model config: " << err << std::endl;
}
ParseModelHttp(
model_metadata_json, model_config_json, batch_size, &model_info);
} else {
inference::ModelMetadataResponse model_metadata;
err = triton_client.grpc_client_->ModelMetadata(
&model_metadata, model_name, model_version, http_headers);
if (!err.IsOk()) {
std::cerr << "error: failed to get model metadata: " << err << std::endl;
}
inference::ModelConfigResponse model_config;
err = triton_client.grpc_client_->ModelConfig(
&model_config, model_name, model_version, http_headers);
if (!err.IsOk()) {
std::cerr << "error: failed to get model config: " << err << std::endl;
}
ParseModelGrpc(model_metadata, model_config, batch_size, &model_info);
}
// Collect the names of the image(s).
std::vector<std::string> image_filenames;
struct stat name_stat;
if (stat(argv[optind], &name_stat) != 0) {
std::cerr << "Failed to find '" << std::string(argv[optind])
<< "': " << strerror(errno) << std::endl;
exit(1);
}
if (name_stat.st_mode & S_IFDIR) {
const std::string dirname = argv[optind];
DIR* dir_ptr = opendir(dirname.c_str());
struct dirent* d_ptr;
while ((d_ptr = readdir(dir_ptr)) != NULL) {
const std::string filename = d_ptr->d_name;
if ((filename != ".") && (filename != "..")) {
image_filenames.push_back(dirname + "/" + filename);
}
}
closedir(dir_ptr);
} else {
image_filenames.push_back(argv[optind]);
}
// Sort the filenames so that we always visit them in the same order
// (readdir does not guarantee any particular order).
std::sort(image_filenames.begin(), image_filenames.end());
// Preprocess the images into input data according to model
// requirements
std::vector<std::vector<uint8_t>> image_data;
for (const auto& fn : image_filenames) {
image_data.emplace_back();
FileToInputData(
fn, model_info.input_c_, model_info.input_h_, model_info.input_w_,
model_info.input_format_, model_info.type1_, model_info.type3_, scale,
&(image_data.back()));
if ((image_data.size() == 1) && !preprocess_output_filename.empty()) {
std::ofstream output_file(preprocess_output_filename);
std::ostream_iterator<uint8_t> output_iterator(output_file);
std::copy(image_data[0].begin(), image_data[0].end(), output_iterator);
}
}
std::vector<int64_t> shape;
// Include the batch dimension if required
if (model_info.max_batch_size_ != 0) {
shape.push_back(batch_size);
}
if (model_info.input_format_.compare("FORMAT_NHWC") == 0) {
shape.push_back(model_info.input_h_);
shape.push_back(model_info.input_w_);
shape.push_back(model_info.input_c_);
} else {
shape.push_back(model_info.input_c_);
shape.push_back(model_info.input_h_);
shape.push_back(model_info.input_w_);
}
// Initialize the inputs with the data.
tc::InferInput* input;
err = tc::InferInput::Create(
&input, model_info.input_name_, shape, model_info.input_datatype_);
if (!err.IsOk()) {
std::cerr << "unable to get input: " << err << std::endl;
exit(1);
}
std::shared_ptr<tc::InferInput> input_ptr(input);
tc::InferRequestedOutput* output;
// Set the number of classification expected
err =
tc::InferRequestedOutput::Create(&output, model_info.output_name_, topk);
if (!err.IsOk()) {
std::cerr << "unable to get output: " << err << std::endl;
exit(1);
}
std::shared_ptr<tc::InferRequestedOutput> output_ptr(output);
std::vector<tc::InferInput*> inputs = {input_ptr.get()};
std::vector<const tc::InferRequestedOutput*> outputs = {output_ptr.get()};
// Configure context for 'batch_size' and 'topk'
tc::InferOptions options(model_name);
options.model_version_ = model_version;
// Send requests of 'batch_size' images. If the number of images
// isn't an exact multiple of 'batch_size' then just start over with
// the first images until the batch is filled.
//
// Number of requests sent = ceil(number of images / batch_size)