Skip to content
This repository has been archived by the owner on Sep 18, 2023. It is now read-only.

[PMEM-SHUFFLE-28]Add RPMP with HA support and integrate it with Spark3.1.1 #33

Merged
merged 1 commit into from
Jul 27, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions core/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,11 @@
<artifactId>hpnl</artifactId>
<version>0.5</version>
</dependency>
<dependency>
<groupId>com.intel.rpmp</groupId>
<artifactId>rpmp</artifactId>
<version>0.1</version>
</dependency>
<dependency>
<groupId>org.xerial</groupId>
<artifactId>sqlite-jdbc</artifactId>
Expand Down
662 changes: 662 additions & 0 deletions core/rpmp-core.patch

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
package org.apache.spark.storage.pmof;

import com.intel.rpmp.PmPoolClient;
import java.io.IOException;
import java.nio.ByteBuffer;

public class RemotePersistentMemoryPool {
private static String remote_host;
private static String remote_port_str;

private RemotePersistentMemoryPool(String remote_address, String remote_port) throws IOException {
pmPoolClient = new PmPoolClient(remote_address, remote_port);
}

public static RemotePersistentMemoryPool getInstance(String remote_address, String remote_port) throws IOException {
synchronized (RemotePersistentMemoryPool.class) {
if (instance == null) {
if (instance == null) {
remote_host = remote_address;
remote_port_str = remote_port;
instance = new RemotePersistentMemoryPool(remote_address, remote_port);
}
}
}
return instance;
}

public static int close() {
synchronized (RemotePersistentMemoryPool.class) {
if (instance != null)
return instance.dispose();
else
return 0;
}
}

public static String getHost() {
return remote_host;
}

public static int getPort() {
return Integer.parseInt(remote_port_str);
}

public int read(long address, long size, ByteBuffer byteBuffer) {
return pmPoolClient.read(address, size, byteBuffer);
}

public long put(String key, ByteBuffer data, long size) {
return pmPoolClient.put(key, data, size);
}

public long get(String key, long size, ByteBuffer data) {
return pmPoolClient.get(key, size, data);
}

public long[] getMeta(String key) {
return pmPoolClient.getMeta(key);
}

public int del(String key) throws IOException {
return pmPoolClient.del(key);
}

public int dispose() {
pmPoolClient.dispose();
return 0;
}

private static PmPoolClient pmPoolClient;
private static RemotePersistentMemoryPool instance;
}
283 changes: 283 additions & 0 deletions core/src/main/scala/org/apache/spark/scheduler/MapStatus.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.scheduler

import java.io.{Externalizable, ObjectInput, ObjectOutput}

import scala.collection.mutable

import org.roaringbitmap.RoaringBitmap

import org.apache.spark.SparkEnv
import org.apache.spark.internal.config
import org.apache.spark.storage.BlockManagerId
import org.apache.spark.util.Utils

/**
* Result returned by a ShuffleMapTask to a scheduler. Includes the block manager address that the
* task has shuffle files stored on as well as the sizes of outputs for each reducer, for passing
* on to the reduce tasks.
*/
private[spark] trait MapStatus {
/** Location where this task output is. */
def location: BlockManagerId

def updateLocation(newLoc: BlockManagerId): Unit

/**
* Estimated size for the reduce block, in bytes.
*
* If a block is non-empty, then this method MUST return a non-zero size. This invariant is
* necessary for correctness, since block fetchers are allowed to skip zero-size blocks.
*/
def getSizeForBlock(reduceId: Int): Long

/**
* The unique ID of this shuffle map task, if spark.shuffle.useOldFetchProtocol enabled we use
* partitionId of the task or taskContext.taskAttemptId is used.
*/
def mapId: Long
}


private[spark] object MapStatus {

/**
* Min partition number to use [[HighlyCompressedMapStatus]]. A bit ugly here because in test
* code we can't assume SparkEnv.get exists.
*/
private lazy val minPartitionsToUseHighlyCompressMapStatus = Option(SparkEnv.get)
.map(_.conf.get(config.SHUFFLE_MIN_NUM_PARTS_TO_HIGHLY_COMPRESS))
.getOrElse(config.SHUFFLE_MIN_NUM_PARTS_TO_HIGHLY_COMPRESS.defaultValue.get)

def apply(
loc: BlockManagerId,
uncompressedSizes: Array[Long],
mapTaskId: Long): MapStatus = {
if (uncompressedSizes.length > minPartitionsToUseHighlyCompressMapStatus) {
HighlyCompressedMapStatus(loc, uncompressedSizes, mapTaskId)
} else {
new CompressedMapStatus(loc, uncompressedSizes, mapTaskId)
}
}

private[this] val LOG_BASE = 1.1

/**
* Compress a size in bytes to 8 bits for efficient reporting of map output sizes.
* We do this by encoding the log base 1.1 of the size as an integer, which can support
* sizes up to 35 GB with at most 10% error.
*/
def compressSize(size: Long): Byte = {
if (size == 0) {
0
} else if (size <= 1L) {
1
} else {
math.min(255, math.ceil(math.log(size) / math.log(LOG_BASE)).toInt).toByte
}
}

/**
* Decompress an 8-bit encoded block size, using the reverse operation of compressSize.
*/
def decompressSize(compressedSize: Byte): Long = {
if (compressedSize == 0) {
0
} else {
math.pow(LOG_BASE, compressedSize & 0xFF).toLong
}
}
}


/**
* A [[MapStatus]] implementation that tracks the size of each block. Size for each block is
* represented using a single byte.
*
* @param loc location where the task is being executed.
* @param compressedSizes size of the blocks, indexed by reduce partition id.
* @param _mapTaskId unique task id for the task
*/
private[spark] class CompressedMapStatus(
private[this] var loc: BlockManagerId,
private[this] var compressedSizes: Array[Byte],
private[this] var _mapTaskId: Long)
extends MapStatus with Externalizable {

// For deserialization only
protected def this() = this(null, null.asInstanceOf[Array[Byte]], -1)

def this(loc: BlockManagerId, uncompressedSizes: Array[Long], mapTaskId: Long) = {
this(loc, uncompressedSizes.map(MapStatus.compressSize), mapTaskId)
}

override def location: BlockManagerId = loc

override def updateLocation(newLoc: BlockManagerId): Unit = {
loc = newLoc
}

override def getSizeForBlock(reduceId: Int): Long = {
MapStatus.decompressSize(compressedSizes(reduceId))
}

override def mapId: Long = _mapTaskId

override def writeExternal(out: ObjectOutput): Unit = Utils.tryOrIOException {
loc.writeExternal(out)
out.writeInt(compressedSizes.length)
out.write(compressedSizes)
out.writeLong(_mapTaskId)
}

override def readExternal(in: ObjectInput): Unit = Utils.tryOrIOException {
loc = BlockManagerId(in)
val len = in.readInt()
compressedSizes = new Array[Byte](len)
in.readFully(compressedSizes)
_mapTaskId = in.readLong()
}
}

/**
* A [[MapStatus]] implementation that stores the accurate size of huge blocks, which are larger
* than spark.shuffle.accurateBlockThreshold. It stores the average size of other non-empty blocks,
* plus a bitmap for tracking which blocks are empty.
*
* @param loc location where the task is being executed
* @param numNonEmptyBlocks the number of non-empty blocks
* @param emptyBlocks a bitmap tracking which blocks are empty
* @param avgSize average size of the non-empty and non-huge blocks
* @param hugeBlockSizes sizes of huge blocks by their reduceId.
* @param _mapTaskId unique task id for the task
*/
private[spark] class HighlyCompressedMapStatus private (
private[this] var loc: BlockManagerId,
private[this] var numNonEmptyBlocks: Int,
private[this] var emptyBlocks: RoaringBitmap,
private[this] var avgSize: Long,
private[this] var hugeBlockSizes: scala.collection.Map[Int, Byte],
private[this] var _mapTaskId: Long)
extends MapStatus with Externalizable {

// loc could be null when the default constructor is called during deserialization
require(loc == null || avgSize > 0 || hugeBlockSizes.size > 0
|| numNonEmptyBlocks == 0 || _mapTaskId > 0,
"Average size can only be zero for map stages that produced no output")

protected def this() = this(null, -1, null, -1, null, -1) // For deserialization only

override def location: BlockManagerId = loc

override def updateLocation(newLoc: BlockManagerId): Unit = {
loc = newLoc
}

override def getSizeForBlock(reduceId: Int): Long = {
assert(hugeBlockSizes != null)
if (emptyBlocks.contains(reduceId)) {
0
} else {
hugeBlockSizes.get(reduceId) match {
case Some(size) => MapStatus.decompressSize(size)
case None => avgSize
}
}
}

override def mapId: Long = _mapTaskId

override def writeExternal(out: ObjectOutput): Unit = Utils.tryOrIOException {
loc.writeExternal(out)
emptyBlocks.serialize(out)
out.writeLong(avgSize)
out.writeInt(hugeBlockSizes.size)
hugeBlockSizes.foreach { kv =>
out.writeInt(kv._1)
out.writeByte(kv._2)
}
out.writeLong(_mapTaskId)
}

override def readExternal(in: ObjectInput): Unit = Utils.tryOrIOException {
loc = BlockManagerId(in)
numNonEmptyBlocks = -1 // SPARK-32436 Scala 2.13 doesn't initialize this during deserialization
emptyBlocks = new RoaringBitmap()
emptyBlocks.deserialize(in)
avgSize = in.readLong()
val count = in.readInt()
val hugeBlockSizesImpl = mutable.Map.empty[Int, Byte]
(0 until count).foreach { _ =>
val block = in.readInt()
val size = in.readByte()
hugeBlockSizesImpl(block) = size
}
hugeBlockSizes = hugeBlockSizesImpl
_mapTaskId = in.readLong()
}
}

private[spark] object HighlyCompressedMapStatus {
def apply(
loc: BlockManagerId,
uncompressedSizes: Array[Long],
mapTaskId: Long): HighlyCompressedMapStatus = {
// We must keep track of which blocks are empty so that we don't report a zero-sized
// block as being non-empty (or vice-versa) when using the average block size.
var i = 0
var numNonEmptyBlocks: Int = 0
var numSmallBlocks: Int = 0
var totalSmallBlockSize: Long = 0
// From a compression standpoint, it shouldn't matter whether we track empty or non-empty
// blocks. From a performance standpoint, we benefit from tracking empty blocks because
// we expect that there will be far fewer of them, so we will perform fewer bitmap insertions.
val emptyBlocks = new RoaringBitmap()
val totalNumBlocks = uncompressedSizes.length
val threshold = Option(SparkEnv.get)
.map(_.conf.get(config.SHUFFLE_ACCURATE_BLOCK_THRESHOLD))
.getOrElse(config.SHUFFLE_ACCURATE_BLOCK_THRESHOLD.defaultValue.get)
val hugeBlockSizes = mutable.Map.empty[Int, Byte]
while (i < totalNumBlocks) {
val size = uncompressedSizes(i)
if (size > 0) {
numNonEmptyBlocks += 1
// Huge blocks are not included in the calculation for average size, thus size for smaller
// blocks is more accurate.
if (size < threshold) {
totalSmallBlockSize += size
numSmallBlocks += 1
} else {
hugeBlockSizes(i) = MapStatus.compressSize(uncompressedSizes(i))
}
} else {
emptyBlocks.add(i)
}
i += 1
}
val avgSize = if (numSmallBlocks > 0) {
totalSmallBlockSize / numSmallBlocks
} else {
0
}
emptyBlocks.trim()
emptyBlocks.runOptimize()
new HighlyCompressedMapStatus(loc, numNonEmptyBlocks, emptyBlocks, avgSize,
hugeBlockSizes, mapTaskId)
}
}
Loading