forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
cinn(py-dsl): parse compute of python dsl (PaddlePaddle#57731)
拆分新特性:CINN Python DSL, 主PR和单测见:PaddlePaddle#56393 此PR只负责 解析python dsl中的compute定义 1. 装饰器@to_cinn_ir封装cinn的function kernel: CinnLowerLevelIrJit支持从Jit运行时中数据类型、target类型、python ast。后续解析compute的信息都会从CinnLowerLevelIrJit这个类中获取。 CinnLowerLevelIrJit也支持静态获取上述信息,通过python的annotation来填充。 2. compute 语义解析 将整个AST分为三种类型: stmts: Function, For, If, With ,对应封装上下文IR的PR: PaddlePaddle#57515 Assign: 表达式"lhs = rhs"的类型,Assign类型构成了stmts。 python/cinn/compiler/expr_executor.py中的exec_expr方法将rhs解析成cinn ir Expr python/cinn/compiler/expr_executor.py中的exec_assign方法,将lhs=rhs表达的assign语义存储在局部变量表中。 Expr:组成Assign中的rhs。 3. 变量管理 python/cinn/compiler/utils.py中的class VariableTable:用于管理Python DSL中定义的变量,主要是下面两个功能。 每次Enter新的Context,会复制当前的变量表 每次Exit Context,会删除当前Context增加的变量,恢复上一轮Context的变量表。
- Loading branch information
Showing
11 changed files
with
694 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from .compiler import compile | ||
|
||
__all__ = ["compile"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
from ..runtime import CinnLowerLevelIrJit | ||
from .compute_code_generator import ComputeCodeGenerator | ||
|
||
|
||
def ast_to_llir(fn, inputs_signature): | ||
function_name = fn.__name__ | ||
# 1. Parse CINN Compute | ||
llir_compute_generator = ComputeCodeGenerator( | ||
fn, function_name, inputs_signature | ||
) | ||
cinn_llir_func = llir_compute_generator.parse() | ||
return cinn_llir_func | ||
|
||
|
||
def compile(fn, just_convert=False, jit_inputs_signature=[], **kwargs): | ||
if isinstance(fn, CinnLowerLevelIrJit): | ||
llir_func = ast_to_llir(fn, jit_inputs_signature) | ||
else: | ||
raise Exception("Current Only support compile from CinnLowerLevelIrJit") | ||
|
||
if just_convert: | ||
return llir_func | ||
return llir_func |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,245 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import ast | ||
import contextlib | ||
|
||
from cinn import ir | ||
|
||
from .expr_executor import ExprExecutor, exec_assign | ||
from .utils import VariableTable, is_node_parsed_in_schedule | ||
|
||
|
||
class ComputeCodeGenerator(ast.NodeVisitor): | ||
""" | ||
Convert python ast to CINN Lower Level IR, | ||
containing only the semantics of the compute part | ||
""" | ||
|
||
def __init__(self, fn, function_name, inputs_signature): | ||
self.fn = fn | ||
self.function_name = function_name | ||
self.inputs_signature = inputs_signature | ||
self.cinn_llir_func = None | ||
self.variables_table = VariableTable() | ||
self.extra_scope = {"range": ir.sequential} | ||
|
||
def parse(self): | ||
ast_node = self.fn.parse() | ||
with ir.IRBuilder() as builder, self.variables_table: | ||
for k, v in self.fn.scope.items(): | ||
self.variables_table.add(k, v) | ||
for k, v in self.extra_scope.items(): | ||
self.variables_table.add(k, v) | ||
self.visit(ast_node) | ||
return builder.get() | ||
|
||
def visit_FunctionDef(self, node) -> None: | ||
""" | ||
Parse CINN Low Level IR FunctionDef. | ||
Args: | ||
node(ast.FunctionDef): The ast FunctionDef Node | ||
""" | ||
with ir.LowerFuncContext(self.function_name) as func_ctx: | ||
arg_names = self.visit(node.args) | ||
|
||
assert len(node.args.defaults) == 0, "Not support default args" | ||
|
||
# 1. Construct args of function | ||
for i, arg_name in enumerate(arg_names): | ||
# Obj of Argument is ir::Buffer | ||
if hasattr(self.inputs_signature[i], "dtype"): | ||
tensor_shape = [ | ||
ir.Expr(dim) for dim in self.inputs_signature[i].shape | ||
] | ||
llir_value = ir._Buffer_.make( | ||
arg_name, self.inputs_signature[i].dtype | ||
) | ||
ir.Arg(arg_name, llir_value) | ||
llir_value = ir._Tensor_.make( | ||
arg_name, | ||
self.inputs_signature[i].dtype, | ||
tensor_shape, | ||
tensor_shape, | ||
) | ||
self.variables_table.add(arg_name, llir_value) | ||
# Obj of Argument is ir::Var | ||
else: | ||
llir_value = ir.Var(arg_name) | ||
ir.Arg(arg_name, llir_value) | ||
llir_value = ir.Expr(llir_value) | ||
self.variables_table.add(arg_name, llir_value) | ||
|
||
# 2. Construct body of function | ||
body = self.visit_compound_statement(node.body) | ||
|
||
def visit_compound_statement(self, stmts): | ||
for stmt in stmts: | ||
self.visit(stmt) | ||
|
||
def visit_arguments(self, node): | ||
""" | ||
Parse CINN Low Level IR Argument. | ||
If it is not jit mode, it will get information from arg.annoatation. | ||
Args: | ||
node(ast.arguments): The ast argument Node | ||
Returns: | ||
list[string]: A list of parameter names | ||
""" | ||
arg_names = [arg.arg for arg in node.args] | ||
|
||
if len(self.inputs_signature) != len(arg_names): | ||
self.inputs_signature = [] | ||
for arg in node.args: | ||
arg_annotation = arg.annotation | ||
if isinstance(arg_annotation, ast.Call): | ||
self.inputs_signature.append( | ||
ExprExecutor(self.variables_table.get()).exec( | ||
arg_annotation | ||
) | ||
) | ||
elif isinstance(arg_annotation, int): | ||
if ( | ||
-(2**21) <= arg_annotation | ||
and arg_annotation <= 2**31 - 1 | ||
): | ||
self.inputs_signature.append("i32") | ||
elif ( | ||
2**63 <= arg_annotation | ||
and arg_annotation <= 2**64 - 1 | ||
): | ||
self.inputs_signature.append("u64") | ||
else: | ||
self.inputs_signature.append("i64") | ||
elif isinstance(arg_annotation, float): | ||
return self.inputs_signature.append("fp32") | ||
else: | ||
raise TypeError( | ||
f'Unsupported type {type(arg_annotation)} for {arg_annotation}' | ||
) | ||
|
||
return arg_names | ||
|
||
def visit_For(self, node) -> ir.Expr: | ||
""" | ||
parse CINN Low Level IR For. | ||
Args: | ||
node(ast.For): The ast For node | ||
""" | ||
for_ctx = ExprExecutor(self.variables_table.get()).exec(node.iter) | ||
with self.variables_table: | ||
with for_ctx as loop_var: | ||
local_var_table = exec_assign( | ||
target=node.target, source=loop_var | ||
) | ||
for k, v in local_var_table.items(): | ||
loop_var.rename(k) | ||
self.variables_table.add(k, ir.Expr(v)) | ||
self.visit_compound_statement(node.body) | ||
|
||
def visit_Assign(self, node): | ||
""" | ||
parse CINN Low Level IR Store. | ||
Args: | ||
node(ast.Assign): The ast Assign node | ||
Returns: | ||
ir.Expr, Points to the Expr of ir::ExprNode<Store> | ||
""" | ||
|
||
if isinstance(node.value, ast.Call) and is_node_parsed_in_schedule( | ||
node.value | ||
): | ||
return "no compute" | ||
|
||
assert ( | ||
len(node.targets) == 1 | ||
), "Unsupport targets is a \ | ||
list of nodes, like 'a = b = c'" | ||
lhs = node.targets[0] | ||
|
||
# 1 parse RHS | ||
rhs_expr = ExprExecutor(self.variables_table.get()).exec(node.value) | ||
|
||
# 2 parse LHS | ||
# 2.1 Type of arg is Tensor | ||
if isinstance(lhs, ast.Subscript): | ||
expr_tensor = ExprExecutor(self.variables_table.get()).exec( | ||
lhs.value | ||
) | ||
if isinstance(lhs.slice, ast.Tuple): | ||
expr_indices = [] | ||
for idx in lhs.slice.elts: | ||
expr_indices.append( | ||
ExprExecutor(self.variables_table.get()).exec(idx) | ||
) | ||
else: | ||
expr_indices = [ | ||
ExprExecutor(self.variables_table.get()).exec(lhs.slice) | ||
] | ||
if not isinstance(rhs_expr, ir.Expr): | ||
rhs_expr = ir.Expr(rhs_expr) | ||
ir.TensorStore(expr_tensor.Expr(), rhs_expr, expr_indices) | ||
# 2.2 Type of arg is Var | ||
else: | ||
local_var_table = exec_assign(target=lhs, source=rhs_expr) | ||
if isinstance(lhs, ast.Tuple): | ||
for k, v in local_var_table.items(): | ||
v.as_var_ref().rename(k) | ||
self.variables_table.add(k, v) | ||
else: | ||
for k, v in local_var_table.items(): | ||
v[0].as_var_ref().rename(k) | ||
self.variables_table.add(k, v[0]) | ||
|
||
def visit_If(self, node): | ||
with self.variables_table: | ||
with ir.IfContext( | ||
ExprExecutor(self.variables_table.get()).exec(node.test) | ||
): | ||
with ir.ThenContext(): | ||
with self.variables_table: | ||
self.visit_compound_statement(node.body) | ||
if node.orelse: | ||
with ir.ElseContext(): | ||
with self.variables_table: | ||
self.visit_compound_statement(node.body) | ||
|
||
def visit_With(self, node): | ||
with self.variables_table: | ||
with contextlib.ExitStack() as context_stack: | ||
for item in node.items: | ||
cur_ctx = ExprExecutor(self.variables_table.get()).exec( | ||
item.context_expr | ||
) | ||
cur_ctx = context_stack.enter_context(cur_ctx) | ||
if item.optional_vars is not None: | ||
local_var_table = exec_assign( | ||
target=item.optional_vars, source=cur_ctx | ||
) | ||
for k, v in local_var_table.items(): | ||
self.variables_table.add(k, v) | ||
body = self.visit_compound_statement(node.body) | ||
|
||
def visit_Expr(self, node): | ||
if is_node_parsed_in_schedule(node.value): | ||
return | ||
res = ExprExecutor(self.variables_table.get()).exec(node.value) | ||
if isinstance(res, ir.Expr): | ||
ir.link_to_parent_context(res) |
Oops, something went wrong.