Skip to content

Specifically for Entity Linking. Quick demo with MedMentions and NCBI datasets is also included.

License

Notifications You must be signed in to change notification settings

izuna385/PubTator-Multiprocess-Parser

Repository files navigation

Multiprocessing PubTator Parsing for Entity Linking

Quick Starts with MedMentions, BC5CDR and NCBI-dataset

$ git clone https://github.com/izuna385/PubTator-Multiprocess-Parser.git
$ cd PubTator-Multiprocess-Parser
$ docker build -t multiprocess_pubtator .
$ docker run -itd multiprocess_pubtator /bin/bash

# In container
$ sh ./scripts/quick_start_Med_full.sh # for MedMentions
  • You can run quick_start_NCBI_full.sh, too. If so, before running, make pickled_doc_dir empty.

  • Note: If you use Mac, do brew install wget before running above script.

Description

How to run

  • Note: The following steps are entirely automated.

    After building container, run sh ./scripts/quick_start_[dataset_name]_full.sh

1. Place PubTator format files to the ./dataset/

  • corpus_pubtator.txt, corpus_pubtator_pmids_trng.txt, corpus_pubtator_pmids_dev.txt, and corpus_pubtator_pmids_test.txt must be placed there.

2. run

python3 main.py

3. Check

  • Each Pubtator documents is preprocessed and dumped to ./dataset/**pmid**.pkl

    The format is as the below.

    {'title':title,  
     'abst':abst,
     'title_plus_abst': title_plus_abst,
     'pubmed_id': pubmed_id,
     'entities': entities,
     'split_sentence': splitted_sentence,
     'if_txt_length_is_changed_flag':if_txt_lenght_is_changed_flag,
     'lines':lines,
     'lines_lemma':lines_lemma
    }
    
    • The Key component is 'lines', in which all information for entity linking is included.
  • Each document takes about 100sec for preprocessing, under en_core_sci_md model.

  • Under 24 core cpus and en_core_sci_md model, ~10GB RAM is needed.

LISENCE

MIT

Releases

No releases published

Packages

No packages published