QuerySight is a powerful command-line tool that analyzes ClickHouse query patterns and provides intelligent optimization recommendations for dbt projects. By analyzing query logs and integrating with your dbt project, it helps identify optimization opportunities and improve query performance.
-
🔍 Advanced Query Analysis
- Parse and analyze ClickHouse query logs
- Track query frequency, duration, and memory usage patterns
- Filter queries by users, types, and custom criteria
- Intelligent pattern detection and categorization
-
📊 dbt Integration
- Map queries to dbt models for coverage analysis
- Track model dependencies and relationships
- Identify unused or inefficient models
- Generate model-specific optimization recommendations
-
🤖 AI-Powered Optimization
- Smart recommendations using OpenAI integration
- Pattern-based performance improvement suggestions
- Model-specific optimization strategies
- Best practices enforcement
-
💾 Performance & Usability
- Intelligent caching system for faster repeated analysis
- Batch processing for large query logs
- Progress tracking with rich CLI interface
- Flexible output formats (CLI, JSON)
- Python 3.10+
- ClickHouse database instance
- OpenAI API key (optional, for AI-powered recommendations)
- dbt project (recommended, for dbt integration features)
- Clone the repository:
git clone https://github.com/codeium/querysight.git
cd querysight
- Install dependencies:
pip install -r requirements.txt
Create a .env
file with your configuration (or copy from .env.example
):
# ClickHouse Connection
CLICKHOUSE_HOST=localhost
CLICKHOUSE_PORT=9000
CLICKHOUSE_USER=default
CLICKHOUSE_PASSWORD=your_password
CLICKHOUSE_DATABASE=default
# OpenAI Configuration
OPENAI_API_KEY=your_openai_key
# Optional dbt Configuration
DBT_PROJECT_PATH=/path/to/dbt/project
python cli.py analyze [OPTIONS]
Analysis Options:
--days INTEGER Analysis timeframe [default: 7]
--focus [queries|models] Analysis focus [default: queries]
--min-frequency INTEGER Minimum query frequency [default: 5]
--min-duration INTEGER Minimum query duration in ms
--sample-size INTEGER Sample size for pattern analysis
--batch-size INTEGER Batch size for processing
Filtering Options:
--include-users TEXT Include specific users (comma-separated)
--exclude-users TEXT Exclude specific users (comma-separated)
--query-kinds TEXT Filter by query kinds (SELECT,INSERT,etc)
--select-patterns TEXT Filter specific patterns by pattern_id (pattern_id is getting created at the first analysis step, you can select patterns of interest on the next steps
--select-tables TEXT Filter specific tables
--select-models TEXT Filter specific dbt models
Output Options:
--sort-by TEXT Sort by [frequency|duration|memory]
--page-size INTEGER Results per page [default: 20]
Cache Options:
--cache / --no-cache Use cached data [default: True]
--force-reset Force cache reset
Analysis Level:
--level TEXT Analysis depth [data_collection|pattern_analysis|dbt_integration|optimization]
--dbt-project TEXT dbt project path
Export analysis results to JSON format:
python cli.py export [OPTIONS]
--output TEXT Output file path [default: stdout]
Run QuerySight in a containerized environment:
# Using docker-compose
docker-compose up --build
# Or with Docker directly
docker build -t querysight .
docker run -it --network host \
-v ~/.ssh:/root/.ssh:ro \
-v /path/to/dbt:/app/dbt_project:ro \
-v ./logs:/app/logs \
-v ./.cache:/app/.cache \
--env-file .env \
querysight analyze --days 7
querysight/
├── cli.py # Main CLI interface
├── utils/
│ ├── ai_suggester.py # AI-powered recommendations
│ ├── cache_manager.py # Query cache management
│ ├── data_acquisition.py # ClickHouse data fetching
│ ├── dbt_analyzer.py # dbt project analysis
│ ├── dbt_mapper.py # Query to model mapping
│ ├── filtering.py # Query filtering logic
│ ├── models.py # Data models
│ └── sql_parser.py # SQL parsing utilities
├── tests/ # Test suite
└── docker/ # Docker configuration
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE
file for details.
- Built with ClickHouse integration
- Powered by OpenAI for intelligent recommendations
- Integrates with dbt for data transformation analysis