-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
executable file
·775 lines (650 loc) · 33.5 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
#!/usr/bin/env python3
"""Command-line interface for QuerySight.
Provides tools for analyzing ClickHouse query patterns and generating optimization recommendations."""
import json
import logging
import sys
import hashlib
from datetime import datetime, timedelta
from enum import Enum
from pathlib import Path
from typing import Optional, Dict, List
import click
from rich.console import Console
from rich import box
from rich.panel import Panel
from rich.progress import Progress
from rich.table import Table
from rich.syntax import Syntax
from rich.text import Text
from utils.config import Config
from utils.models import (
AnalysisResult, QueryPattern, QueryLog,
AIRecommendation, QueryKind, QueryFocus, DBTModel
)
from utils.data_acquisition import ClickHouseDataAcquisition
from utils.dbt_analyzer import DBTProjectAnalyzer
from utils.ai_suggester import AISuggester
from utils.cache_manager import QueryLogsCacheManager
from utils.filtering import filter_patterns
logger = logging.getLogger(__name__)
console = Console()
class AnalysisLevel(Enum):
DATA_COLLECTION = "data_collection"
PATTERN_ANALYSIS = "pattern_analysis"
DBT_INTEGRATION = "dbt_integration"
OPTIMIZATION = "optimization"
def validate_config() -> None:
"""Validate configuration before running"""
is_valid, missing_vars = Config.validate_config()
logger.info(f"Config validation result: valid={is_valid}, missing={missing_vars}")
if not is_valid:
console.print("[red]Error: Missing required configuration variables:[/red]")
for var in missing_vars:
console.print(f" - {var}")
sys.exit(1)
def validate_connection(data_acquisition: ClickHouseDataAcquisition) -> None:
"""Test database connection"""
try:
data_acquisition.test_connection()
except Exception as e:
console.print(f"[red]Error connecting to ClickHouse: {str(e)}[/red]")
sys.exit(1)
def display_query_patterns(patterns: List[QueryPattern], sort_by: str = 'duration', page_size: int = 20):
"""Display analyzed query patterns in a table with sorting and pagination"""
if not patterns:
console.print("[yellow]No query patterns found[/yellow]")
return
# Sort patterns
if sort_by == 'frequency':
patterns.sort(key=lambda p: p.frequency, reverse=True)
elif sort_by == 'duration':
patterns.sort(key=lambda p: p.avg_duration_ms, reverse=True)
elif sort_by == 'memory':
patterns.sort(key=lambda p: sum(p.memory_usage) / p.frequency if p.frequency > 0 else 0, reverse=True)
# Calculate total pages
total_patterns = len(patterns)
total_pages = (total_patterns + page_size - 1) // page_size
for current_page in range(1, total_pages + 1):
start_idx = (current_page - 1) * page_size
end_idx = min(start_idx + page_size, total_patterns)
page_patterns = patterns[start_idx:end_idx]
table = Table(
title=f"Query Patterns (Page {current_page}/{total_pages})",
show_lines=True,
expand=True
)
# Add columns
table.add_column("Pattern ID", style="cyan", no_wrap=True)
table.add_column("Frequency", justify="right")
table.add_column("Avg Duration", justify="right")
table.add_column("Memory (MB)", justify="right")
table.add_column("Users", style="blue")
table.add_column("Tables", style="magenta")
table.add_column("First Seen", style="green")
table.add_column("Last Seen", style="green")
# Add rows with color coding
for pattern in page_patterns:
# Color code based on duration
duration_style = (
"red" if pattern.avg_duration_ms > 1000 else # > 1s
"yellow" if pattern.avg_duration_ms > 100 else # > 100ms
"green"
)
avg_memory_mb = pattern.memory_usage / (1024 * 1024) if pattern.memory_usage else 0
users_display = (", ".join(sorted(pattern.users)[:3]) + "...") if len(pattern.users) > 3 else ", ".join(pattern.users)
tables_display = (", ".join(sorted(pattern.tables_accessed)[:3]) + "...") if len(pattern.tables_accessed) > 3 else ", ".join(pattern.tables_accessed)
table.add_row(
pattern.pattern_id[:12] + "...",
str(pattern.frequency),
Text(f"{pattern.avg_duration_ms:,.2f} ms", style=duration_style),
f"{avg_memory_mb:,.2f}",
users_display or "N/A",
tables_display or "N/A",
pattern.first_seen.strftime("%Y-%m-%d %H:%M") if pattern.first_seen else "N/A",
pattern.last_seen.strftime("%Y-%m-%d %H:%M") if pattern.last_seen else "N/A"
)
console.print(table)
if current_page < total_pages:
console.print("\n" + "─" * 80 + "\n") # Page separator
console.print(f"\nTotal Patterns: {total_patterns}")
# Print summary statistics
console.print("\n[bold]Summary Statistics[/bold]")
stats_table = Table(show_header=False, show_lines=True)
stats_table.add_column("Metric", style="cyan")
stats_table.add_column("Value", style="green")
# Calculate statistics
total_queries = sum(p.frequency for p in patterns)
total_duration_ms = sum(p.avg_duration_ms * p.frequency for p in patterns)
total_memory = sum(p.memory_usage for p in patterns)
unique_users = len(set().union(*[p.users for p in patterns]))
unique_tables = len(set().union(*[p.tables_accessed for p in patterns]))
# Calculate percentages for slow/medium/fast queries
slow_queries = sum(p.frequency for p in patterns if p.avg_duration_ms > 1000)
medium_queries = sum(p.frequency for p in patterns if 100 < p.avg_duration_ms <= 1000)
fast_queries = sum(p.frequency for p in patterns if p.avg_duration_ms <= 100)
# Add rows with enhanced formatting
stats_table.add_row("Query Count", f"{total_queries:,}")
stats_table.add_row("Total Duration", f"{total_duration_ms/1000:,.2f} seconds")
stats_table.add_row("Avg Duration per Query", f"{total_duration_ms/total_queries:,.2f} ms")
stats_table.add_row("Total Memory Usage", f"{total_memory/(1024*1024):,.2f} MB")
stats_table.add_row("Avg Memory per Query", f"{total_memory/(1024*1024*total_queries):,.2f} MB")
stats_table.add_row("Unique Users", str(unique_users))
stats_table.add_row("Unique Tables", str(unique_tables))
stats_table.add_row("Query Speed Distribution",
f"Slow (>1s): {slow_queries/total_queries*100:.1f}%\n"
f"Medium (100ms-1s): {medium_queries/total_queries*100:.1f}%\n"
f"Fast (<100ms): {fast_queries/total_queries*100:.1f}%"
)
console.print(stats_table)
def display_model_coverage(result: AnalysisResult):
"""Display dbt model coverage metrics with hierarchical relationships"""
if not result or not result.query_patterns:
console.print("[yellow]No query patterns available[/yellow]")
return
# Display pattern-based coverage
console.print("\n[bold cyan]DBT Model Coverage Analysis[/bold cyan]")
# First display patterns with model coverage
patterns_with_models = [p for p in result.query_patterns if p.dbt_models_used]
if patterns_with_models:
console.print("\n[bold green]Patterns Using DBT Models[/bold green]")
for pattern in patterns_with_models:
display_pattern_coverage(pattern, result)
console.print() # Add spacing between patterns
# Then display patterns with only unmapped tables
patterns_unmapped = [p for p in result.query_patterns
if not p.dbt_models_used and p.tables_accessed]
if patterns_unmapped:
console.print("\n[bold yellow]Patterns Using Only Unmapped Tables[/bold yellow]")
for pattern in patterns_unmapped:
display_pattern_coverage(pattern, result)
console.print() # Add spacing between patterns
# Finally display patterns with no table access
patterns_no_tables = [p for p in result.query_patterns
if not p.dbt_models_used and not p.tables_accessed]
if patterns_no_tables:
console.print("\n[bold red]Patterns Without Table Access[/bold red]")
for pattern in patterns_no_tables:
display_pattern_coverage(pattern, result)
console.print() # Add spacing between patterns
# Display uncovered tables summary at the end
if result.uncovered_tables:
console.print("\n[bold yellow]Uncovered Tables Summary[/bold yellow]")
console.print(", ".join(sorted(result.uncovered_tables)))
def display_pattern_coverage(pattern: QueryPattern, result: AnalysisResult):
"""Display coverage information for a single pattern"""
pattern_table = Table(show_header=False, box=box.ROUNDED)
pattern_table.add_column("Property", style="bold blue")
pattern_table.add_column("Value")
pattern_table.add_row("Pattern ID", pattern.pattern_id)
pattern_table.add_row("Frequency", str(pattern.frequency))
pattern_table.add_row("Avg Duration", f"{pattern.avg_duration_ms:.2f}ms")
pattern_table.add_row("SQL Pattern", pattern.sql_pattern)
# Create nested table for model relationships
models_table = Table(show_header=True, box=box.SIMPLE)
models_table.add_column("Model Type", style="bold green")
models_table.add_column("Models")
# Add directly used models
if pattern.dbt_models_used:
models_table.add_row(
"Direct Models",
", ".join(sorted(pattern.dbt_models_used))
)
# Collect all parent and child models
all_parents = set()
all_children = set()
for model_name in pattern.dbt_models_used:
model = result.dbt_models.get(model_name)
if model:
all_parents.update(model.depends_on)
all_children.update(model.referenced_by)
# Remove direct models from parents/children to avoid duplication
all_parents -= pattern.dbt_models_used
all_children -= pattern.dbt_models_used
# Add parent models if any
if all_parents:
models_table.add_row(
"Parent Models",
", ".join(sorted(all_parents))
)
# Add child models if any
if all_children:
models_table.add_row(
"Child Models",
", ".join(sorted(all_children))
)
# Add tables that couldn't be mapped to models
unmapped_tables = pattern.tables_accessed - {
model_name for model_name in pattern.dbt_models_used
}
if unmapped_tables:
models_table.add_row(
"Unmapped Tables",
", ".join(sorted(unmapped_tables))
)
pattern_table.add_row("Model Coverage", models_table)
console.print(pattern_table)
@click.group()
def cli():
"""QuerySight CLI - A tool for analyzing ClickHouse query patterns and optimizing dbt models.
Available Commands:
analyze Analyze query patterns and generate optimization recommendations
export Export the latest analysis results to JSON format
"""
pass
@cli.command()
@click.option('--days', default=7, help='Number of days of query history to analyze')
@click.option('--focus', default='all', help='Analysis focus: slow (long-running queries), frequent (high-frequency queries), or all')
@click.option('--min-frequency', default=2, help='Minimum frequency threshold for query patterns')
@click.option('--min-duration', type=float, help='Minimum average query duration in milliseconds')
@click.option('--sample-size', default=1.0, help='Sample size ratio (0.0-1.0) of query logs to analyze')
@click.option('--batch-size', default=1000, help='Number of queries to process in each batch')
@click.option('--include-users', help='Filter specific users to include (comma-separated)')
@click.option('--exclude-users', help='Filter specific users to exclude (comma-separated)')
@click.option('--query-kinds', help='Types of queries to analyze (comma-separated)')
@click.option('--cache/--no-cache', default=True, help='Enable/disable caching of query logs')
@click.option('--force-reset', is_flag=True, help='Force reset of cache database')
@click.option('--level', default='optimization', help='Analysis depth: data_collection, pattern_analysis, dbt_integration, or optimization')
@click.option('--dbt-project', help='Path to dbt project for model analysis')
@click.option('--select-patterns', help='Filter specific query patterns to analyze (comma-separated IDs)')
@click.option('--select-tables', help='Filter patterns by table names (comma-separated)')
@click.option('--select-models', help='Filter patterns by dbt model names (comma-separated)')
@click.option('--sort-by', type=click.Choice(['frequency', 'duration', 'memory']), default='duration',
help='Sort patterns by frequency, duration, or memory usage')
@click.option('--page-size', type=int, default=20, help='Number of patterns to show per page')
def analyze(days, focus, min_frequency, min_duration, sample_size, batch_size, include_users,
exclude_users, query_kinds, cache, force_reset, level, dbt_project, select_patterns,
select_tables, select_models, sort_by, page_size):
try:
logger.info("Starting analysis with parameters:")
logger.info(f" Days: {days}")
logger.info(f" Focus: {focus}")
logger.info(f" Include users: {include_users}")
logger.info(f" Query kinds: {query_kinds}")
logger.info(f" Level: {level}")
# Initialize components and parameters
components = initialize_analysis_components(dbt_project, force_reset)
logger.info("Components initialized")
params = prepare_analysis_parameters(days, focus, include_users, exclude_users, query_kinds)
logger.info(f"Analysis parameters prepared: {params}")
target_level = level.lower()
logger.info(f"Target analysis level: {target_level}")
# Create progress tracking
with Progress() as progress:
tasks = create_progress_tasks(progress, target_level)
# Data Collection Phase
query_logs = execute_data_collection(components, params, cache, progress, tasks['data_collection'])
if target_level == AnalysisLevel.DATA_COLLECTION.value:
display_analysis_results(None, [], [], target_level)
return
# Pattern Analysis Phase is required for all levels beyond data_collection
patterns = execute_pattern_analysis(
components,
query_logs,
min_frequency,
progress,
tasks.get('pattern_analysis', tasks['data_collection']) # Fallback to data_collection task
)
# Build filter criteria from options
filter_criteria = {}
if select_patterns:
filter_criteria['pattern_ids'] = select_patterns.split(',')
if min_duration:
filter_criteria['min_duration'] = min_duration
if min_frequency:
filter_criteria['min_frequency'] = min_frequency
if select_tables:
filter_criteria['tables'] = select_tables.split(',')
if select_models:
filter_criteria['dbt_models'] = select_models.split(',')
# Apply filters if any criteria specified
if filter_criteria:
original_count = len(patterns)
patterns = filter_patterns(patterns, filter_criteria)
logger.info(f"Filtered patterns from {original_count} to {len(patterns)} based on criteria: {filter_criteria}")
if not patterns:
console.print("[yellow]No patterns match the specified filter criteria[/yellow]")
return
if target_level == AnalysisLevel.PATTERN_ANALYSIS.value:
display_analysis_results(None, patterns, [], target_level)
return
# Filter patterns if specified
if select_patterns:
pattern_ids = set(select_patterns.split(','))
patterns = [p for p in patterns if p.pattern_id in pattern_ids]
logger.info(f"Selected {len(patterns)} patterns for analysis")
# DBT Integration Phase
if target_level >= AnalysisLevel.DBT_INTEGRATION.value:
analysis_result = execute_dbt_integration(
components,
patterns,
progress,
tasks.get('dbt_integration', tasks['data_collection'])
)
if target_level == AnalysisLevel.DBT_INTEGRATION.value:
display_analysis_results(analysis_result, patterns, [], target_level)
return
# Filter models if specified
if select_models:
model_names = set(select_models.split(','))
# Filter patterns that use selected models
patterns = [
p for p in analysis_result.query_patterns
if any(model in model_names for model in p.dbt_models_used)
]
# Update analysis result
analysis_result.query_patterns = patterns
analysis_result.calculate_coverage()
logger.info(f"Selected {len(patterns)} patterns using specified models")
# Optimization Phase
if target_level >= AnalysisLevel.OPTIMIZATION.value:
recommendations = execute_optimization(components, analysis_result, progress, tasks.get('optimization', tasks['data_collection']))
display_analysis_results(analysis_result, patterns, recommendations, target_level)
except Exception as e:
logger.error(f"Analysis failed: {str(e)}", exc_info=True)
console.print(f"[red]Error: {str(e)}[/red]")
sys.exit(1)
def initialize_analysis_components(dbt_project_path: Optional[str] = None, force_reset: bool = False) -> Dict:
"""Initialize and validate all required analysis components"""
try:
validate_config()
# Initialize data acquisition
data_acquisition = ClickHouseDataAcquisition(
host=Config.CLICKHOUSE_HOST,
port=Config.CLICKHOUSE_PORT,
user=Config.CLICKHOUSE_USER,
password=Config.CLICKHOUSE_PASSWORD,
database=Config.CLICKHOUSE_DATABASE,
force_reset=force_reset
)
# Initialize dbt analyzer
dbt_analyzer = DBTProjectAnalyzer(dbt_project_path or Config.DBT_PROJECT_PATH)
# Initialize cache manager
cache_manager = QueryLogsCacheManager(force_reset=force_reset)
# Initialize AI suggester if API key is available
ai_suggester = None
if Config.LLM_MODEL:
ai_suggester = AISuggester()
return {
'data_acquisition': data_acquisition,
'dbt_analyzer': dbt_analyzer,
'cache_manager': cache_manager,
'ai_suggester': ai_suggester
}
except Exception as e:
logger.error(f"Failed to initialize analysis components: {str(e)}")
raise RuntimeError(f"Failed to initialize analysis components: {str(e)}")
def prepare_analysis_parameters(days, focus, include_users, exclude_users, query_kinds):
"""Prepare and validate analysis parameters"""
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
# Handle query kinds
if query_kinds:
kinds = [qt.strip().upper() for qt in query_kinds.split(',')]
query_kinds_list = [QueryKind[qt] for qt in kinds]
else:
query_kinds_list = None
# Handle focus - always return a single QueryFocus enum
focus_enum = QueryFocus.ALL if not focus else QueryFocus[focus.upper()]
return {
'start_date': start_date,
'end_date': end_date,
'query_focus': focus_enum,
'user_include': [u.lower() for u in include_users.split(',')] if include_users else None,
'user_exclude': [u.lower() for u in exclude_users.split(',')] if exclude_users else None,
'query_kinds': query_kinds_list
}
def create_progress_tasks(progress, target_level):
"""Create progress tracking tasks for each analysis level"""
tasks = {}
analysis_levels = {
'data_collection': AnalysisLevel.DATA_COLLECTION.value,
'pattern_analysis': AnalysisLevel.PATTERN_ANALYSIS.value,
'dbt_integration': AnalysisLevel.DBT_INTEGRATION.value,
'optimization': AnalysisLevel.OPTIMIZATION.value
}
# Always create data collection task as it's required for all levels
tasks['data_collection'] = progress.add_task(
"[cyan]Data Collection: Fetching query logs...",
total=100
)
# Add tasks based on target level
if target_level >= analysis_levels['pattern_analysis']:
tasks['pattern_analysis'] = progress.add_task(
"[cyan]Pattern Analysis: Analyzing query patterns...",
total=100
)
if target_level >= analysis_levels['dbt_integration']:
tasks['dbt_integration'] = progress.add_task(
"[cyan]DBT Integration: Analyzing models...",
total=100
)
if target_level >= analysis_levels['optimization']:
tasks['optimization'] = progress.add_task(
"[cyan]Optimization: Generating recommendations...",
total=100
)
return tasks
def execute_data_collection(components, params, cache, progress, task):
"""Execute data collection level of analysis"""
try:
# Generate cache key
cache_key = f"level1_{params['start_date'].isoformat()}_{params['end_date'].isoformat()}_{params['query_focus'].name}"
if cache and components['cache_manager'].has_valid_cache(cache_key):
query_logs = components['cache_manager'].get_cached_data(cache_key)
progress.update(task, completed=100)
logger.info("Using cached query logs")
else:
query_logs = components['data_acquisition'].get_query_logs(
days=(params['end_date'] - params['start_date']).days,
focus=params['query_focus'],
include_users=params['user_include'],
exclude_users=params['user_exclude'],
query_kinds=params['query_kinds']
)
if cache:
components['cache_manager'].cache_data(cache_key, query_logs)
logger.info("Cached query logs")
progress.update(task, completed=100)
return query_logs
except Exception as e:
logger.error(f"Data collection failed: {str(e)}", exc_info=True)
raise RuntimeError(f"Data collection failed: {str(e)}")
def execute_pattern_analysis(components, query_logs, min_frequency, progress, task):
"""Execute pattern analysis level"""
try:
cache_key = f"level2_{hashlib.sha256(str(query_logs).encode()).hexdigest()}_{min_frequency}"
if components.get('cache', True) and components['cache_manager'].has_valid_cache(cache_key):
patterns = components['cache_manager'].get_cached_data(cache_key)
progress.update(task, completed=100)
logger.info("Using cached patterns")
else:
patterns = components['data_acquisition'].analyze_query_patterns(
query_logs,
min_frequency=min_frequency
)
if components.get('cache', True):
components['cache_manager'].cache_data(cache_key, patterns)
logger.info("Cached query patterns")
progress.update(task, completed=100)
return patterns
except Exception as e:
logger.error(f"Pattern analysis failed: {str(e)}", exc_info=True)
raise RuntimeError(f"Pattern analysis failed: {str(e)}")
def execute_dbt_integration(components, patterns, progress, task):
"""Execute DBT integration level"""
try:
# Generate cache key based on pattern IDs to ensure consistent enrichment
pattern_ids = sorted([p.pattern_id for p in patterns])
cache_key = f"level3_{hashlib.sha256(','.join(pattern_ids).encode()).hexdigest()}_{Config.DBT_PROJECT_PATH}"
if components.get('cache', True) and components['cache_manager'].has_valid_cache(cache_key):
analysis_result = components['cache_manager'].get_cached_data(cache_key)
# Only proceed if we got a valid result from cache
if analysis_result is not None:
# Ensure dbt_mapper is set even when using cached data
if 'dbt_analyzer' in components:
analysis_result.dbt_mapper = components['dbt_analyzer']
analysis_result.calculate_coverage() # Recalculate with mapper
progress.update(task, completed=100)
logger.info("Using cached DBT analysis")
return analysis_result
# Get dbt analysis
dbt_analyzer = components['dbt_analyzer']
analysis_result = dbt_analyzer.analyze_project()
# Enrich patterns with historical data and DBT info
enriched_patterns = components['cache_manager'].enrich_patterns(patterns, cache_key)
# For each pattern, try to map tables to DBT models
for pattern in enriched_patterns:
for table in pattern.tables_accessed:
model_name = dbt_analyzer.get_model_name(table)
if model_name:
pattern.dbt_models_used.add(model_name)
# Cache the updated pattern
components['cache_manager'].cache_pattern(pattern, cache_key)
# Update analysis result with enriched patterns and recalculate coverage
analysis_result.query_patterns = enriched_patterns
analysis_result.calculate_coverage()
if components.get('cache', True):
components['cache_manager'].cache_data(cache_key, analysis_result)
logger.info("Cached DBT analysis")
progress.update(task, completed=100)
return analysis_result
except Exception as e:
logger.error(f"DBT integration failed: {str(e)}", exc_info=True)
raise RuntimeError(f"DBT integration failed: {str(e)}")
def execute_optimization(components, analysis_result, progress, task):
"""Execute optimization level"""
try:
cache_key = f"level4_{hashlib.sha256(str(analysis_result).encode()).hexdigest()}"
if components.get('cache', True) and components['cache_manager'].has_valid_cache(cache_key):
recommendations = components['cache_manager'].get_cached_data(cache_key)
progress.update(task, completed=100)
logger.info("Using cached recommendations")
else:
recommendations = components['ai_suggester'].generate_recommendations(
patterns=analysis_result.query_patterns,
dbt_models=analysis_result.dbt_models
)
if components.get('cache', True):
# Convert recommendations to dictionaries before caching
recommendations_dict = [rec.to_dict() for rec in recommendations]
components['cache_manager'].cache_data(cache_key, recommendations_dict)
logger.info("Cached recommendations")
progress.update(task, completed=100)
return recommendations
except Exception as e:
logger.error(f"Optimization analysis failed: {str(e)}", exc_info=True)
raise RuntimeError(f"Optimization analysis failed: {str(e)}")
def display_analysis_results(analysis_result, patterns, recommendations, level):
"""Display analysis results based on the level"""
try:
if level == AnalysisLevel.DATA_COLLECTION.value:
console.print("[green]Data collection completed successfully[/green]")
return
if level == AnalysisLevel.PATTERN_ANALYSIS.value:
console.print(f"\n[bold cyan]Found {len(patterns)} query patterns:[/bold cyan]")
# Create pattern table
table = Table(show_header=True, header_style="bold magenta")
table.add_column("Pattern ID", style="dim")
table.add_column("Frequency", justify="right")
table.add_column("Avg Duration (ms)", justify="right")
table.add_column("Memory Usage (MB)", justify="right")
table.add_column("Tables", style="cyan")
for pattern in patterns:
table.add_row(
pattern.pattern_id,
str(pattern.frequency),
f"{pattern.avg_duration_ms:.2f}",
f"{pattern.memory_usage / (1024*1024):.2f}",
", ".join(sorted(pattern.tables_accessed)[:3]) +
("..." if len(pattern.tables_accessed) > 3 else "")
)
console.print(table)
return
console.print("\n[bold green]Analysis Complete![/bold green]\n")
# Always show query count first
if isinstance(patterns, list):
console.print(f"[bold]Found {len(patterns)} query patterns[/bold]")
# Always show patterns if we have them
if patterns:
console.print("\n[bold]Query Pattern Analysis[/bold]")
display_query_patterns(patterns, sort_by='duration', page_size=20)
else:
console.print("\n[yellow]No query patterns found[/yellow]")
if analysis_result:
console.print("\n[bold]DBT Model Coverage[/bold]")
display_model_coverage(analysis_result)
if recommendations:
console.print("\n[bold]AI Recommendations[/bold]")
display_recommendations(recommendations)
console.print(Panel(
f"Analysis completed at level: [cyan]{level}[/cyan]",
title="Analysis Summary",
border_style="green"
))
except Exception as e:
logger.error(f"Failed to display analysis results: {str(e)}", exc_info=True)
console.print(f"[red]Error: {str(e)}[/red]")
sys.exit(1)
def display_recommendations(recommendations: List[AIRecommendation]) -> None:
"""Display AI-generated optimization recommendations"""
if not recommendations:
console.print("[yellow]No optimization recommendations generated[/yellow]")
return
console.print("\n[bold]AI Optimization Recommendations[/bold]")
for i, rec in enumerate(recommendations, 1):
# Create metadata section if available
metadata_section = ""
if rec.pattern_metadata:
metadata = rec.pattern_metadata
metadata_section = (
f"\nPattern Details:\n"
f"• SQL Pattern:\n[blue]{metadata['sql_pattern']}[/blue]\n" # Add SQL pattern display
f"• Frequency: {metadata['frequency']} queries\n"
f"• Avg Duration: {metadata['avg_duration_ms']:.2f} ms\n"
f"• Memory Usage: {metadata['memory_usage'] / (1024*1024):.2f} MB\n"
f"• Tables: {', '.join(metadata['tables_accessed'][:3])}{'...' if len(metadata['tables_accessed']) > 3 else ''}\n"
f"• DBT Models: {', '.join(metadata['dbt_models_used'][:3])}{'...' if len(metadata['dbt_models_used']) > 3 else ''}\n"
f"• Complexity Score: {metadata['complexity_score']:.2f}"
)
panel = Panel(
f"Type: [cyan]{rec.type}[/cyan]\n"
f"Impact: [{'green' if rec.impact == 'HIGH' else 'yellow' if rec.impact == 'MEDIUM' else 'red'}]{rec.impact}[/]\n"
f"Description: {rec.description}\n"
+ (f"Suggested SQL:\n[blue]{rec.suggested_sql}[/blue]" if rec.suggested_sql else "")
+ metadata_section,
title=f"Recommendation {i}",
expand=False
)
console.print(panel)
@cli.command()
@click.option('--output', type=click.Path(), help='Output file path (JSON)')
def export(output: Optional[str]):
"""Export the latest analysis results to a JSON file.
If no output file is specified, prints the results to stdout. The export
includes query patterns, model coverage metrics, and uncovered tables from
the most recent analysis run.
"""
try:
cache_manager = QueryLogsCacheManager()
latest_result = cache_manager.get_latest_result()
if not latest_result:
console.print("[yellow]No analysis results found in cache[/yellow]")
return
result_dict = {
'timestamp': latest_result.timestamp.isoformat(),
'query_patterns': [pattern.__dict__ for pattern in latest_result.query_patterns],
'model_coverage': latest_result.model_coverage,
'uncovered_tables': list(latest_result.uncovered_tables)
}
if output:
with open(output, 'w') as f:
json.dump(result_dict, f, indent=2)
console.print(f"[green]Results exported to {output}[/green]")
else:
console.print(json.dumps(result_dict, indent=2))
except Exception as e:
console.print(f"[red]Error: {str(e)}[/red]")
sys.exit(1)
if __name__ == '__main__':
cli()