Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace python random with torch.rand to enable dynamo.export #24434

Merged
merged 5 commits into from
Jun 23, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/transformers/models/autoformer/modeling_autoformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1198,7 +1198,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1408,7 +1408,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/bart/modeling_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -837,7 +837,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1090,7 +1090,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/bart/modeling_flax_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -479,7 +479,7 @@ def __call__(
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -625,7 +625,7 @@ def __call__(
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1933,7 +1933,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -2276,7 +2276,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/biogpt/modeling_biogpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -579,7 +579,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/blenderbot/modeling_blenderbot.py
Original file line number Diff line number Diff line change
Expand Up @@ -767,7 +767,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1019,7 +1019,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -470,7 +470,7 @@ def __call__(
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -619,7 +619,7 @@ def __call__(
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -765,7 +765,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1016,7 +1016,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -482,7 +482,7 @@ def __call__(
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -631,7 +631,7 @@ def __call__(
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1224,7 +1224,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1378,7 +1378,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue
if idx == 0:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -587,7 +587,7 @@ def forward(
all_hidden_states = all_hidden_states + (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/detr/modeling_detr.py
Original file line number Diff line number Diff line change
Expand Up @@ -979,7 +979,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1118,7 +1118,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/flaubert/modeling_flaubert.py
Original file line number Diff line number Diff line change
Expand Up @@ -580,7 +580,7 @@ def forward(
attentions = () if output_attentions else None
for i in range(self.n_layers):
# LayerDrop
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/fsmt/modeling_fsmt.py
Original file line number Diff line number Diff line change
Expand Up @@ -550,7 +550,7 @@ def forward(
encoder_states += (x,)
x = x.transpose(0, 1) # B x T x C -> T x B x C
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
attn = None
else:
Expand Down Expand Up @@ -794,7 +794,7 @@ def forward(
x = x.transpose(0, 1)
all_hidden_states += (x,)
x = x.transpose(0, 1)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/hubert/modeling_hubert.py
Original file line number Diff line number Diff line change
Expand Up @@ -725,7 +725,7 @@ def forward(
all_hidden_states = all_hidden_states + (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down Expand Up @@ -814,7 +814,7 @@ def forward(
all_hidden_states = all_hidden_states + (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/informer/modeling_informer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1205,7 +1205,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1425,7 +1425,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/led/modeling_led.py
Original file line number Diff line number Diff line change
Expand Up @@ -1871,7 +1871,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])

if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None, None)
Expand Down Expand Up @@ -2135,7 +2135,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/m2m_100/modeling_m2m_100.py
Original file line number Diff line number Diff line change
Expand Up @@ -813,7 +813,7 @@ def forward(
encoder_states = encoder_states + (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down Expand Up @@ -1057,7 +1057,7 @@ def forward(
all_hidden_states += (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/marian/modeling_flax_marian.py
Original file line number Diff line number Diff line change
Expand Up @@ -493,7 +493,7 @@ def __call__(
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -642,7 +642,7 @@ def __call__(
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/marian/modeling_marian.py
Original file line number Diff line number Diff line change
Expand Up @@ -778,7 +778,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1024,7 +1024,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1862,7 +1862,7 @@ def forward(
if output_hidden_states:
all_hidden_states += (hidden_states,)

dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])

if self.training and (dropout_probability < self.layerdrop):
continue
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/maskformer/modeling_maskformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -764,7 +764,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/mbart/modeling_flax_mbart.py
Original file line number Diff line number Diff line change
Expand Up @@ -492,7 +492,7 @@ def __call__(
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -640,7 +640,7 @@ def __call__(
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/mbart/modeling_mbart.py
Original file line number Diff line number Diff line change
Expand Up @@ -819,7 +819,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1074,7 +1074,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/mctct/modeling_mctct.py
Original file line number Diff line number Diff line change
Expand Up @@ -610,7 +610,7 @@ def forward(
encoder_states = encoder_states + (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down
Loading