Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace python random with torch.rand to enable dynamo.export #24434

Merged
merged 5 commits into from
Jun 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions src/transformers/models/autoformer/modeling_autoformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@
""" PyTorch Autoformer model."""

import math
import random
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

Expand Down Expand Up @@ -1198,7 +1197,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1408,7 +1407,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
5 changes: 2 additions & 3 deletions src/transformers/models/bart/modeling_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
""" PyTorch BART model."""
import copy
import math
import random
import warnings
from typing import List, Optional, Tuple, Union

Expand Down Expand Up @@ -837,7 +836,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1090,7 +1089,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@

import copy
import math
import random
from typing import List, Optional, Tuple, Union

import numpy as np
Expand Down Expand Up @@ -1933,7 +1932,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -2276,7 +2275,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
3 changes: 1 addition & 2 deletions src/transformers/models/biogpt/modeling_biogpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@


import math
import random
from typing import Optional, Tuple, Union

import torch
Expand Down Expand Up @@ -579,7 +578,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
5 changes: 2 additions & 3 deletions src/transformers/models/blenderbot/modeling_blenderbot.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@
import copy
import math
import os
import random
import warnings
from typing import List, Optional, Tuple, Union

Expand Down Expand Up @@ -767,7 +766,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1019,7 +1018,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@

import copy
import math
import random
from typing import List, Optional, Tuple, Union

import torch
Expand Down Expand Up @@ -765,7 +764,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1016,7 +1015,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@


import math
import random
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple

Expand Down Expand Up @@ -1224,7 +1223,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1378,7 +1377,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue
if idx == 0:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -587,7 +587,7 @@ def forward(
all_hidden_states = all_hidden_states + (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down
5 changes: 2 additions & 3 deletions src/transformers/models/detr/modeling_detr.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@


import math
import random
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple

Expand Down Expand Up @@ -979,7 +978,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1118,7 +1117,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
3 changes: 1 addition & 2 deletions src/transformers/models/flaubert/modeling_flaubert.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@

import itertools
import math
import random
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union

Expand Down Expand Up @@ -580,7 +579,7 @@ def forward(
attentions = () if output_attentions else None
for i in range(self.n_layers):
# LayerDrop
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
5 changes: 2 additions & 3 deletions src/transformers/models/fsmt/modeling_fsmt.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,6 @@
"""PyTorch Fairseq model, ported from https://github.com/pytorch/fairseq/tree/master/examples/wmt19"""

import math
import random
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
Expand Down Expand Up @@ -550,7 +549,7 @@ def forward(
encoder_states += (x,)
x = x.transpose(0, 1) # B x T x C -> T x B x C
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
attn = None
else:
Expand Down Expand Up @@ -794,7 +793,7 @@ def forward(
x = x.transpose(0, 1)
all_hidden_states += (x,)
x = x.transpose(0, 1)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/hubert/modeling_hubert.py
Original file line number Diff line number Diff line change
Expand Up @@ -725,7 +725,7 @@ def forward(
all_hidden_states = all_hidden_states + (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down Expand Up @@ -814,7 +814,7 @@ def forward(
all_hidden_states = all_hidden_states + (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down
5 changes: 2 additions & 3 deletions src/transformers/models/informer/modeling_informer.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
# limitations under the License.
""" PyTorch Informer model."""

import random
from typing import List, Optional, Tuple, Union

import numpy as np
Expand Down Expand Up @@ -1205,7 +1204,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1425,7 +1424,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
5 changes: 2 additions & 3 deletions src/transformers/models/led/modeling_led.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@


import math
import random
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
Expand Down Expand Up @@ -1871,7 +1870,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])

if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None, None)
Expand Down Expand Up @@ -2135,7 +2134,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
5 changes: 2 additions & 3 deletions src/transformers/models/m2m_100/modeling_m2m_100.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@


import math
import random
from typing import List, Optional, Tuple, Union

import torch
Expand Down Expand Up @@ -813,7 +812,7 @@ def forward(
encoder_states = encoder_states + (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down Expand Up @@ -1057,7 +1056,7 @@ def forward(
all_hidden_states += (hidden_states,)

# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])

skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
Expand Down
5 changes: 2 additions & 3 deletions src/transformers/models/marian/modeling_marian.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@

import copy
import math
import random
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
Expand Down Expand Up @@ -778,7 +777,7 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
Expand Down Expand Up @@ -1024,7 +1023,7 @@ def forward(
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue

Expand Down
3 changes: 1 addition & 2 deletions src/transformers/models/mask2former/modeling_mask2former.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
""" PyTorch Mask2Former model."""

import math
import random
import warnings
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
Expand Down Expand Up @@ -1862,7 +1861,7 @@ def forward(
if output_hidden_states:
all_hidden_states += (hidden_states,)

dropout_probability = random.uniform(0, 1)
dropout_probability = torch.rand([])

if self.training and (dropout_probability < self.layerdrop):
continue
Expand Down
Loading