http://www.pri.kyoto-u.ac.jp/datasets/macaquepose/index.html
Prefix | Description | Count |
---|---|---|
PRI | Primate Research Institute, Kyoto University (Species: Japanese Macaque) | 1641 |
ZooA | Toyama Municipal Family Park Zoo (Species: Japanese Macaque) | 3784 |
ZooB | Itozu no Mori Zoological Park (Species: Japanese Macaque) | 1312 |
ZooC | Inokashira Park Zoo (Species: Rhesus Macaque) | 2747 |
ZooD | Tobu Zoo (Species: Rhesus Macaque) | 2461 |
Other | Google Open Images Dataset (Species: Various) | 1138 |
Total | Total | 13083 |
To extract bounding boxes from segmentation annotations and export them to COCO format (YOLO is also supported):
python scripts/macaquepose_v1_bboxes.py --data_dir PATH/TO/macaquepose_v1 --output train.json --split train --format coco
python scripts/macaquepose_v1_bboxes.py --data_dir PATH/TO/macaquepose_v1 --output val.json --split val --format coco
python scripts/macaquepose_v1_bboxes.py --data_dir PATH/TO/macaquepose_v1 --output all.json --split all --format coco
Notes:
--data_dir
should containannotations.csv
file andimages
folder.pandas
andPIL
are required.- If YOLO format is used,
--output
should be a subdirectory name. - Train split: PRI, ZooA, ZooB, ZooC, ZooD. Val split: Other (Open Images).
Training script is adapted from torchvision. Some default values are changed. We use RetinaNet with ResNet-50 FPN backbone.
python detection/train.py --data-path datasets/macaquepose_v1 -b 16 --epochs 5 --pretrained --amp