Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Document TensorProduct, ExteriorPower and SymmetricPower (they existed since at least GAP 4.4) #4339

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions doc/ref/vspc.xml
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,17 @@
<#Include Label="CheckForHandlingByNiceBasis">

</Section>


<Section Label="Tensor Products and Exterior and Symmetric Powers">
<Heading>Tensor Products and Exterior and Symmetric Powers</Heading>

<#Include Label="TensorProduct">
<#Include Label="ExteriorPower">
<#Include Label="SymmetricPower">

</Section>

</Chapter>


Expand Down
34 changes: 34 additions & 0 deletions lib/algrep.gd
Original file line number Diff line number Diff line change
Expand Up @@ -836,6 +836,7 @@ DeclareCategoryCollections( "IsTensorElement" );
#O TensorProduct( <list> )
#O TensorProduct( <V>, <W>, ... )
##
## <#GAPDoc Label="TensorProduct">
## <ManSection>
## <Oper Name="TensorProduct" Arg='list'
## Label="for a list of vector spaces"/>
Expand All @@ -862,8 +863,19 @@ DeclareCategoryCollections( "IsTensorElement" );
## This does not mean that all tensor products have the
## same zero element: zeros of different tensor products have different
## families.
## <Example><![CDATA[
## gap> V:=TensorProduct(Rationals^2, Rationals^3);
## <vector space over Rationals, with 6 generators>
## gap> Basis(V);
## Basis( <vector space over Rationals, with 6 generators>,
## [ 1*([ 0, 1 ]<x>[ 0, 0, 1 ]), 1*([ 0, 1 ]<x>[ 0, 1, 0 ]),
## 1*([ 0, 1 ]<x>[ 1, 0, 0 ]), 1*([ 1, 0 ]<x>[ 0, 0, 1 ]),
## 1*([ 1, 0 ]<x>[ 0, 1, 0 ]), 1*([ 1, 0 ]<x>[ 1, 0, 0 ]) ] )
## ]]></Example>
## See also <Ref Oper="KroneckerProduct"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TensorProductOp", [ IsList, IsVectorSpace ] );
DeclareGlobalFunction( "TensorProduct" );
Expand Down Expand Up @@ -926,6 +938,7 @@ DeclareCategoryCollections( "IsWedgeElement" );
##
#O ExteriorPower( <V>, <k> )
##
## <#GAPDoc Label="ExteriorPower">
## <ManSection>
## <Oper Name="ExteriorPower" Arg='V, k'/>
##
Expand All @@ -948,8 +961,17 @@ DeclareCategoryCollections( "IsWedgeElement" );
## This does not mean that all exterior powers have the
## same zero element: zeros of different exterior powers have different
## families.
## <Example><![CDATA[
## gap> V:=ExteriorPower(Rationals^3, 2);
## <vector space of dimension 3 over Rationals>
## gap> Basis(V);
## Basis( <vector space of dimension 3 over Rationals>, [
## 1*([ 0, 1, 0 ]/\[ 0, 0, 1 ]), 1*([ 1, 0, 0 ]/\[ 0, 0, 1 ]),
## 1*([ 1, 0, 0 ]/\[ 0, 1, 0 ]) ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ExteriorPower", [ IsLeftModule, IsInt ] );

Expand Down Expand Up @@ -1004,14 +1026,26 @@ DeclareCategoryCollections( "IsSymmetricPowerElement" );
##
#O SymmetricPower( <V>, <k> )
##
## <#GAPDoc Label="SymmetricPower">
## <ManSection>
## <Oper Name="SymmetricPower" Arg='V, k'/>
##
## <Description>
## Here <A>V</A> must be a vector space. This function returns the <A>k</A>-th
## symmetric power of <A>V</A>.
## <Example><![CDATA[
## gap> V:=SymmetricPower(Rationals^3, 2);
## <vector space over Rationals, with 6 generators>
## gap> Basis(V);
## Basis( <vector space over Rationals, with 6 generators>,
## [ 1*([ 0, 0, 1 ].[ 0, 0, 1 ]), 1*([ 0, 1, 0 ].[ 0, 0, 1 ]),
## 1*([ 0, 1, 0 ].[ 0, 1, 0 ]), 1*([ 1, 0, 0 ].[ 0, 0, 1 ]),
## 1*([ 1, 0, 0 ].[ 0, 1, 0 ]), 1*([ 1, 0, 0 ].[ 1, 0, 0 ])
## ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SymmetricPower", [ IsLeftModule, IsInt ] );

Expand Down