Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add polynomial kernel #298

Merged
merged 10 commits into from
Oct 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions bofire/data_models/kernels/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
ContinuousKernel,
LinearKernel,
MaternKernel,
PolynomialKernel,
RBFKernel,
)
from bofire.data_models.kernels.kernel import Kernel
Expand All @@ -23,6 +24,7 @@
AnyContinuousKernel = Union[
MaternKernel,
LinearKernel,
PolynomialKernel,
RBFKernel,
]

Expand All @@ -36,6 +38,7 @@
ScaleKernel,
HammondDistanceKernel,
LinearKernel,
PolynomialKernel,
MaternKernel,
RBFKernel,
TanimotoKernel,
Expand Down
6 changes: 6 additions & 0 deletions bofire/data_models/kernels/continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,3 +24,9 @@ class MaternKernel(ContinuousKernel):
class LinearKernel(ContinuousKernel):
type: Literal["LinearKernel"] = "LinearKernel"
variance_prior: Optional[AnyPrior] = None


class PolynomialKernel(ContinuousKernel):
type: Literal["PolynomialKernel"] = "PolynomialKernel"
offset_prior: Optional[AnyPrior] = None
power: int = 2
3 changes: 3 additions & 0 deletions bofire/data_models/surrogates/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
MixedSingleTaskGPSurrogate,
)
from bofire.data_models.surrogates.mlp import MLPEnsemble
from bofire.data_models.surrogates.quadratic import QuadraticSurrogate
from bofire.data_models.surrogates.random_forest import RandomForestSurrogate
from bofire.data_models.surrogates.single_task_gp import (
SingleTaskGPHyperconfig,
Expand All @@ -36,6 +37,7 @@
SaasSingleTaskGPSurrogate,
XGBoostSurrogate,
LinearSurrogate,
QuadraticSurrogate,
TanimotoGPSurrogate,
]

Expand All @@ -47,6 +49,7 @@
SaasSingleTaskGPSurrogate,
XGBoostSurrogate,
LinearSurrogate,
QuadraticSurrogate,
TanimotoGPSurrogate,
]
except ImportError:
Expand Down
21 changes: 21 additions & 0 deletions bofire/data_models/surrogates/quadratic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
from typing import Literal

from pydantic import Field

from bofire.data_models.kernels.api import (
PolynomialKernel,
)
from bofire.data_models.priors.api import BOTORCH_NOISE_PRIOR, AnyPrior

# from bofire.data_models.strategies.api import FactorialStrategy
from bofire.data_models.surrogates.botorch import BotorchSurrogate
from bofire.data_models.surrogates.scaler import ScalerEnum
from bofire.data_models.surrogates.trainable import TrainableSurrogate


class QuadraticSurrogate(BotorchSurrogate, TrainableSurrogate):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Rather PolynomialSurrogate?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This specific one has power=2. So its quadratic.

type: Literal["QuadraticSurrogate"] = "QuadraticSurrogate"

kernel: PolynomialKernel = Field(default_factory=lambda: PolynomialKernel(power=2))
noise_prior: AnyPrior = Field(default_factory=lambda: BOTORCH_NOISE_PRIOR())
scaler: ScalerEnum = ScalerEnum.NORMALIZE
17 changes: 17 additions & 0 deletions bofire/kernels/mapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,22 @@ def map_LinearKernel(
)


def map_PolynomialKernel(
data_model: data_models.PolynomialKernel,
batch_shape: torch.Size,
ard_num_dims: int,
active_dims: List[int],
) -> gpytorch.kernels.PolynomialKernel:
return gpytorch.kernels.PolynomialKernel(
batch_shape=batch_shape,
active_dims=active_dims,
power=data_model.power,
offset_prior=priors.map(data_model.offset_prior)
if data_model.offset_prior is not None
else None,
)


def map_AdditiveKernel(
data_model: data_models.AdditiveKernel,
batch_shape: torch.Size,
Expand Down Expand Up @@ -131,6 +147,7 @@ def map_TanimotoKernel(
data_models.RBFKernel: map_RBFKernel,
data_models.MaternKernel: map_MaternKernel,
data_models.LinearKernel: map_LinearKernel,
data_models.PolynomialKernel: map_PolynomialKernel,
data_models.AdditiveKernel: map_AdditiveKernel,
data_models.MultiplicativeKernel: map_MultiplicativeKernel,
data_models.ScaleKernel: map_ScaleKernel,
Expand Down
1 change: 1 addition & 0 deletions bofire/surrogates/mapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
data_models.SaasSingleTaskGPSurrogate: SaasSingleTaskGPSurrogate,
data_models.XGBoostSurrogate: XGBoostSurrogate,
data_models.LinearSurrogate: SingleTaskGPSurrogate,
data_models.QuadraticSurrogate: SingleTaskGPSurrogate,
data_models.TanimotoGPSurrogate: SingleTaskGPSurrogate,
}

Expand Down
21 changes: 21 additions & 0 deletions tests/bofire/data_models/test_kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
LinearKernel,
MaternKernel,
MultiplicativeKernel,
PolynomialKernel,
RBFKernel,
ScaleKernel,
TanimotoKernel,
Expand Down Expand Up @@ -154,6 +155,26 @@ def test_scale_kernel():
assert hasattr(k, "outputscale_prior") is False


def test_poly_kernel():
kernel = PolynomialKernel(power=2, offset_prior=BOTORCH_SCALE_PRIOR())
k = kernels.map(
kernel,
batch_shape=torch.Size(),
ard_num_dims=10,
active_dims=list(range(5)),
)
assert hasattr(k, "offset_prior")
assert isinstance(k.offset_prior, gpytorch.priors.GammaPrior)
kernel = PolynomialKernel(power=2)
k = kernels.map(
kernel,
batch_shape=torch.Size(),
ard_num_dims=10,
active_dims=list(range(5)),
)
assert hasattr(k, "offset_prior") is False


@pytest.mark.parametrize(
"kernel, ard_num_dims, active_dims, expected_kernel",
[
Expand Down
43 changes: 43 additions & 0 deletions tests/bofire/surrogates/test_quadratic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
import numpy as np
from pandas.testing import assert_frame_equal

import bofire.surrogates.api as surrogates
from bofire.data_models.domain.api import Inputs, Outputs
from bofire.data_models.features.api import ContinuousInput, ContinuousOutput
from bofire.data_models.kernels.api import PolynomialKernel
from bofire.data_models.surrogates.api import QuadraticSurrogate


def test_QuadraticSurrogate():
N_EXPERIMENTS = 10

inputs = Inputs(
features=[
ContinuousInput(key="a", bounds=(0, 40)),
ContinuousInput(key="b", bounds=(20, 60)),
]
)
outputs = Outputs(features=[ContinuousOutput(key="c")])

experiments = inputs.sample(N_EXPERIMENTS)
experiments["c"] = (
experiments["a"] * 2.2
+ experiments["b"] * -0.05
+ experiments["b"]
+ np.random.normal(loc=0, scale=5, size=N_EXPERIMENTS)
)
experiments["valid_c"] = 1

surrogate_data = QuadraticSurrogate(inputs=inputs, outputs=outputs)
surrogate = surrogates.map(surrogate_data)

assert isinstance(surrogate, surrogates.SingleTaskGPSurrogate)
assert isinstance(surrogate.kernel, PolynomialKernel)

# check dump
surrogate.fit(experiments=experiments)
preds = surrogate.predict(experiments)
dump = surrogate.dumps()
surrogate.loads(dump)
preds2 = surrogate.predict(experiments)
assert_frame_equal(preds, preds2)
Loading