DiffusionBlend: Learning 3D Image Prior through Position-aware Diffusion Score Blending for 3D Computed Tomography Reconstruction
This repository contains the official implementation of "DiffusionBlend: Learning 3D Image Prior through Position-aware Diffusion Score Blending for 3D Computed Tomography Reconstruction", published at NeurIPS 2024.
DiffusionBlend introduces a novel method for 3D computed tomography (CT) reconstruction using position-aware diffusion score blending. By leveraging position-specific priors, the framework achieves enhanced reconstruction accuracy while maintaining computational efficiency.
- Position-aware Diffusion Blending: Incorporates spatial information to refine 3D reconstruction quality.
- Triplane-based 3D Representation: Utilizes a position encoding to model 3D patch priors efficiently.
- Scalable and Generalizable: Designed for both synthetic and real-world CT reconstruction tasks.
The code is implemented in Python and requires the following dependencies:
torch
(>=1.9.0)torchvision
numpy
You can install the dependencies via:
pip install torch torchvision numpy
To train the model on synthetic volume CT data, use the following script:
bash train_SVCT_3D_triplane.sh
To perform inference and evaluate 3D reconstruction using diffusion score blending, use:
bash eval_3D_blend_cond.sh
![image](https://private-user-images.githubusercontent.com/24488063/394496282-c9abd6c3-4723-4245-81d1-5d512bfb0c06.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk1MDY0MDksIm5iZiI6MTczOTUwNjEwOSwicGF0aCI6Ii8yNDQ4ODA2My8zOTQ0OTYyODItYzlhYmQ2YzMtNDcyMy00MjQ1LTgxZDEtNWQ1MTJiZmIwYzA2LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTQlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjE0VDA0MDgyOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTQwMmM3YTAxNTM2MTE0YmY3NjE5MDFlNjFmNWY3NWFmZWNhNzgyOTFhNTZkZWE0ZDhhYjVlMGU1N2E5NTViODImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.l2LTKPdSsONVLp2od39lLvpnmB8d_OAkIwyPhJm9vIE)
![image](https://private-user-images.githubusercontent.com/24488063/394496346-9abd3ad7-d8cb-4e47-95ce-d955b47405df.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk1MDY0MDksIm5iZiI6MTczOTUwNjEwOSwicGF0aCI6Ii8yNDQ4ODA2My8zOTQ0OTYzNDYtOWFiZDNhZDctZDhjYi00ZTQ3LTk1Y2UtZDk1NWI0NzQwNWRmLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTQlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjE0VDA0MDgyOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWUzZTVjZjBjYzI2Yjg5MzVhZDg4ZmY0ODFmN2NlZDY1MzcwYzFjOGUxNGI2OWIyMjA5OWVlYzg5ODEwYTZmY2EmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.a6yESEDglBebQAmtJ3JmMMW4uBWkjTHcIT05DJQbS0I)
![image](https://private-user-images.githubusercontent.com/24488063/394496425-56110385-4540-49da-88b4-d6145f15bf2c.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk1MDY0MDksIm5iZiI6MTczOTUwNjEwOSwicGF0aCI6Ii8yNDQ4ODA2My8zOTQ0OTY0MjUtNTYxMTAzODUtNDU0MC00OWRhLTg4YjQtZDYxNDVmMTViZjJjLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTQlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjE0VDA0MDgyOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWM2ZjliMTg5OTkzNmE4ZDI1OTk2M2YxNmZlMWUyMWIxMjljNWE1ZWVkNjAyZDQ0ZDQwOGRmNDBlYWFmYmUxNDcmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.2tqDD8HP3ngDj9kLOyJwONmJ8_INfeynyc9AQBwR2lo)
If you find this work useful in your research, please cite:
@inproceedings{diffusionblend2024,
title={DiffusionBlend: Learning 3D Image Prior through Position-aware Diffusion Score Blending for 3D Computed Tomography Reconstruction},
author={Song, Bowen and Hu, Jason and Luo, Zhaoxu and Fessler, Jeffrey A and Shen, Liyue},
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
year={2024}
}
We thank the contributors and the NeurIPS community for their valuable feedback and discussions.
This project is licensed under the MIT License. See the LICENSE file for details.