-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_triplane_lidc.py
317 lines (288 loc) · 12 KB
/
training_triplane_lidc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import json
import tqdm
import torch
import matplotlib.pyplot as plt
import numpy as np
from glob import glob
import argparse
import traceback
import logging
import yaml
import sys
import os
import torch
import numpy as np
from pathlib import Path
from guided_diffusion.CTDataset import *
from guided_diffusion.train_util import *
from guided_diffusion.script_util import create_model, create_gaussian_diffusion
from skimage.metrics import peak_signal_noise_ratio
from pathlib import Path
from physics.ct import CT
from physics.mri import SinglecoilMRI_comp, MulticoilMRI
from utils import CG, clear, get_mask, nchw_comp_to_real, real_to_nchw_comp, normalize_np, get_beta_schedule
from functools import partial
def compute_alpha(beta, t):
beta = torch.cat([torch.zeros(1).to(beta.device), beta], dim=0)
a = (1 - beta).cumprod(dim=0).index_select(0, t + 1).view(-1, 1, 1, 1)
return a
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()["__doc__"])
parser.add_argument(
"--config", type=str, required=True, help="Path to the config file"
)
parser.add_argument(
"--type", type=str, required=True, help="Either [2d, 3d]"
)
parser.add_argument(
"--CG_iter", type=int, default=5, help="Inner number of iterations for CG"
)
parser.add_argument(
"--Nview", type=int, default=16, help="number of projections for CT"
)
parser.add_argument("--seed", type=int, default=1234, help="Set different seeds for diverse results")
parser.add_argument(
"--exp", type=str, default="./exp", help="Path for saving running related data."
)
parser.add_argument(
"--ckpt_load_name", type=str, default="AAPM256_1M.pt", help="Load pre-trained ckpt"
)
parser.add_argument(
"--deg", type=str, required=True, help="Degradation"
)
parser.add_argument(
"--sigma_y", type=float, default=0., help="sigma_y"
)
parser.add_argument(
"--eta", type=float, default=0.85, help="Eta"
)
parser.add_argument(
"--rho", type=float, default=10.0, help="rho"
)
parser.add_argument(
"--lamb", type=float, default=0.04, help="lambda for TV"
)
parser.add_argument(
"--gamma", type=float, default=1.0, help="regularizer for noisy recon"
)
parser.add_argument(
"--T_sampling", type=int, default=50, help="Total number of sampling steps"
)
parser.add_argument(
"--resume_checkpoint", type=bool, default=False, help="resume training from a previous checkpoint"
)
parser.add_argument(
"-i",
"--image_folder",
type=str,
default="./results",
help="The folder name of samples",
)
parser.add_argument(
"--dataset_path", type=str, default="/media/harry/tomo/AAPM_data_vol/256_sorted/L067", help="The folder of the dataset"
)
# MRI-exp arguments
parser.add_argument(
"--mask_type", type=str, default="uniform1d", help="Undersampling type"
)
parser.add_argument(
"--acc_factor", type=int, default=4, help="acceleration factor"
)
parser.add_argument(
"--nspokes", type=int, default=30, help="Number of sampled lines in radial trajectory"
)
parser.add_argument(
"--center_fraction", type=float, default=0.08, help="ACS region"
)
args = parser.parse_args()
# parse config file
with open(os.path.join("configs/vp", args.config), "r") as f:
config = yaml.safe_load(f)
new_config = dict2namespace(config)
if "CT" in args.deg:
args.image_folder = Path(args.image_folder) / f"{args.deg}" / f"view{args.Nview}"
elif "MRI" in args.deg:
args.image_folder = Path(args.image_folder) / f"{args.deg}" / f"{args.mask_type}_acc{args.acc_factor}"
args.image_folder.mkdir(exist_ok=True, parents=True)
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
# add device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
logging.info("Using device: {}".format(device))
new_config.device = device
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
return args, new_config
class Diffusion(object):
def __init__(self, args, config, device=None):
self.args = args
self.args.image_folder = Path(self.args.image_folder)
for t in ["input", "recon", "label"]:
if t == "recon":
(self.args.image_folder / t / "progress").mkdir(exist_ok=True, parents=True)
else:
(self.args.image_folder / t).mkdir(exist_ok=True, parents=True)
self.config = config
if device is None:
device = (
torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu")
)
self.device = device
self.model_var_type = config.model.var_type
betas = get_beta_schedule(
beta_schedule=config.diffusion.beta_schedule,
beta_start=config.diffusion.beta_start,
beta_end=config.diffusion.beta_end,
num_diffusion_timesteps=config.diffusion.num_diffusion_timesteps,
)
betas = self.betas = torch.from_numpy(betas).float().to(self.device)
self.num_timesteps = betas.shape[0]
alphas = 1.0 - betas
alphas_cumprod = alphas.cumprod(dim=0)
alphas_cumprod_prev = torch.cat(
[torch.ones(1).to(device), alphas_cumprod[:-1]], dim=0
)
self.alphas_cumprod_prev = alphas_cumprod_prev
posterior_variance = (
betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
)
if self.model_var_type == "fixedlarge":
self.logvar = betas.log()
elif self.model_var_type == "fixedsmall":
self.logvar = posterior_variance.clamp(min=1e-20).log()
def train(self):
config_dict = vars(self.config.model)
config_dict["class_cond"] = True
config_dict["use_spacecode"] = False
print(config_dict)
model = create_model(**config_dict)
print(model.use_spacecode, "using spacecode")
ckpt = os.path.join(self.args.exp, "vp", self.args.ckpt_load_name)
pretrainsteps = 0
if self.args.resume_checkpoint is True:
print("resuming training")
ckpt = "/nfs/turbo/coe-liyues/bowenbw/3DCT/checkpoints/triplane3D_finetune_452024_iter50099_cond.ckpt"
pretrainsteps = 50000
else:
ckpt = "/nfs/turbo/coe-liyues/bowenbw/3DCT/checkpoints/256x256_diffusion_uncond.pt"
loaded = torch.load(ckpt, map_location=self.device)
model.load_state_dict(torch.load(ckpt, map_location=self.device)['state_dict']) ####if using last checkpoint
# model.load_state_dict(torch.load(ckpt, map_location=self.device), strict = False) ######if using imagenet checkpoint
print(f"Model ckpt loaded from {ckpt}")
model.to("cuda")
model.train()
diffusion = create_gaussian_diffusion(
steps=1000,
learn_sigma=True,
noise_schedule="linear",
use_kl=False,
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
timestep_respacing="",
)
print(diffusion.training_losses, "training loss")
lr = 1e-5
params = list(model.parameters())
opt = torch.optim.AdamW(params, lr=lr)
#############################testing feed numpy matrix into the training script########################
#########################use the given trainer in improved_diffusion#########################
"""use the given trainer in improved_diffusion
ds = CTDataset()
params = {'batch_size': 4}
training_generator = torch.utils.data.DataLoader(ds, **params)
def load_data(loader):
while True:
yield from loader
data = load_data(training_generator)
TrainLoop2(
model=model,
diffusion=diffusion,
data=data,
batch_size=4,
microbatch=-1,
lr=3e-4,
ema_rate="0.9999",
log_interval=10,
save_interval=2500,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
schedule_sampler="uniform",
weight_decay=0.0,
lr_anneal_steps=0,
).run_loop()
"""
################################train manually####################################
# files = glob('/nfs/turbo/coe-liyues/bowenbw/3DCT/AAPM_fusion_training/*')
# files = glob("/nfs/turbo/coe-liyues/bowenbw/3DCT/AAPM_fusion_training_cond/*")
# files2 = glob("/nfs/turbo/coe-liyues/bowenbw/3DCT/slice_fusion_training/*")
# files = glob("/nfs/turbo/coe-liyues/bowenbw/3DCT/LIDC_fusion_training_cond/*")
# files = glob("/nfs/turbo/coe-liyues/bowenbw/3DCT/LIDC_fusion_training_cond_small/*")
files = glob("/nfs/turbo/coe-liyues/bowenbw/3DCT/LIDC_fusion_training_cond_large/*")
for m in range(100100):
x_train = np.zeros((4, 3, 256, 256))
y = torch.randint(0, 3, (4,))
for l in range(4):
filename = np.random.choice(files)
x_raw = np.transpose(np.load(filename), (2,0,1))[0:3]
x_raw = np.clip(x_raw*2-1, -1, 1)
x_train[l] = x_raw.copy()
y_val = int((filename.split(".")[0]).split("_")[-1])
y[l] = y_val
print(y_val, filename)
x_orig = torch.from_numpy(x_train).to("cuda").to(torch.float)
i = torch.randint(0, 1000, (4,))
t = i.to("cuda").long()
y = y.to("cuda").long()
model_kwargs = {}
model_kwargs["y"] = y
if m % 1000 == 0:
x_sample = diffusion.ddim_sample_loop_progressive(model, (4,3,256,256), task = "None", progress= True, model_kwargs = model_kwargs)
np.save("/nfs/turbo/coe-liyues/bowenbw/3DCT/x_sample_ddim_iter" + str(m + pretrainsteps) + "_finetune_4232024_cond_lidc.npy", x_sample.detach().cpu().numpy())
loss = diffusion.training_losses(model, x_orig, t, model_kwargs=model_kwargs)["loss"]
loss = loss.mean()
loss.backward()
opt.step()
opt.zero_grad()
# print(x_orig.dtype)
# loss = diffusion.training_losses(model, x_orig, t)["loss"]
# loss= loss.mean()
# loss.backward()
# opt.step()
# opt.zero_grad()
if m % 10 == 0:
print(loss.item(), "loss", " at ", m, "th iteration")
# ####################################################################################################################
if m % 2000 == 99:
torch.save({'iterations':m,'state_dict': model.state_dict()}, "/nfs/turbo/coe-liyues/bowenbw/3DCT/checkpoints/LIDC_triplane3D_finetunelarge_4232024_iter" + str(m + pretrainsteps) + "_cond.ckpt")
####################################################################################
# model.eval()
# print('Run DDS.',
# f'{self.args.T_sampling} sampling steps.',
# f'Task: {self.args.deg}.'
# )
# self.dds(model)
def main():
args, config = parse_args_and_config()
diffusion_model = Diffusion(args, config)
diffusion_model.train()
if __name__ == "__main__":
print("running training")
main()