Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add IsModularLatticeDigraph #629

Merged
merged 4 commits into from
Apr 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions doc/prop.xml
Original file line number Diff line number Diff line change
Expand Up @@ -1334,6 +1334,40 @@ false]]></Example>
</ManSection>
<#/GAPDoc>

<#GAPDoc Label="IsModularLatticeDigraph">
<ManSection>
<Prop Name="IsModularLatticeDigraph" Arg="digraph"/>
<Returns><K>true</K> or <K>false</K>.</Returns>
<Description>
<C>IsModularLatticeDigraph</C> returns <K>true</K> if the digraph
<A>digraph</A> is a <E>modular lattice digraph</E>.<P/>

A <E>modular lattice digraph</E> is a <E>lattice digraph</E>
(<Ref Prop="IsLatticeDigraph"/>) which is modular. That is to say,
the <E>lattice digraph</E> representing <M>N5</M> is not
embeddable as a lattice
(see <URL>https://en.wikipedia.org/wiki/Modular_lattice</URL> and
<Ref Prop="IsLatticeEmbedding"/>).

&MUTABLE_RECOMPUTED_PROP;

<Example><![CDATA[
gap> D := ChainDigraph(5);
<immutable chain digraph with 5 vertices>
gap> D := DigraphReflexiveTransitiveClosure(D);
<immutable preorder digraph with 5 vertices, 15 edges>
gap> IsModularLatticeDigraph(D);
true
gap> N5 := Digraph([[2, 3], [4], [4], []]);
<immutable digraph with 4 vertices, 4 edges>
gap> DigraphReflexiveTransitiveClosure(N5);
<immutable preorder digraph with 4 vertices, 9 edges>
gap> IsModularLatticeDigraph(N5);
false
]]></Example>
</Description>
</ManSection>
<#/GAPDoc>

<#GAPDoc Label="IsPreorderDigraph">
<ManSection>
Expand Down
1 change: 1 addition & 0 deletions doc/z-chap5.xml
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
<#Include Label="DigraphMeetTable">
<#Include Label="IsUpperSemimodularDigraph">
<#Include Label="IsDistributiveLatticeDigraph">
<#Include Label="IsModularLatticeDigraph">
</Section>

<Section><Heading>Regularity</Heading>
Expand Down
1 change: 1 addition & 0 deletions gap/prop.gd
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ DeclareProperty("IsJoinSemilatticeDigraph", IsDigraph);
DeclareProperty("IsMeetSemilatticeDigraph", IsDigraph);
DeclareProperty("IsPermutationDigraph", IsDigraph);
DeclareProperty("IsDistributiveLatticeDigraph", IsDigraph);
DeclareProperty("IsModularLatticeDigraph", IsDigraph);
DeclareSynonymAttr("IsLatticeDigraph",
IsMeetSemilatticeDigraph and IsJoinSemilatticeDigraph);
DeclareSynonymAttr("IsPreorderDigraph",
Expand Down
21 changes: 15 additions & 6 deletions gap/prop.gi
Original file line number Diff line number Diff line change
Expand Up @@ -661,19 +661,28 @@ end);

InstallMethod(IsDistributiveLatticeDigraph, "for a digraph", [IsDigraph],
function(D)
local N5, M3;
local M3;

if not IsLatticeDigraph(D) then
return false;
fi;

N5 := DigraphReflexiveTransitiveClosure(
Digraph([[2, 4], [3], [5], [5], []]));
M3 := DigraphReflexiveTransitiveClosure(
Digraph([[2, 3, 4], [5], [5], [5], []]));

if LatticeDigraphEmbedding(N5, D) <> fail or
LatticeDigraphEmbedding(M3, D) <> fail then
return IsModularLatticeDigraph(D) and
LatticeDigraphEmbedding(M3, D) = fail;
end);

InstallMethod(IsModularLatticeDigraph, "for a digraph", [IsDigraph],
function(D)
local N5;
if not IsLatticeDigraph(D) then
return false;
fi;
return true;

N5 := DigraphReflexiveTransitiveClosure(
Digraph([[2, 4], [3], [5], [5], []]));

return LatticeDigraphEmbedding(N5, D) = fail;
end);
27 changes: 27 additions & 0 deletions tst/standard/prop.tst
Original file line number Diff line number Diff line change
Expand Up @@ -1330,6 +1330,33 @@ gap> D := DigraphReflexiveTransitiveClosure(D);
gap> IsDistributiveLatticeDigraph(D);
true

# IsModularLatticeDigraph
gap> D := Digraph([[11, 10], [], [2], [2], [3], [4, 3], [6, 5], [7], [7],
> [8], [9, 8]]);
<immutable digraph with 11 vertices, 14 edges>
gap> D := DigraphReflexiveTransitiveClosure(D);
<immutable preorder digraph with 11 vertices, 60 edges>
gap> IsModularLatticeDigraph(D);
true
gap> D := ChainDigraph(10);
<immutable chain digraph with 10 vertices>
gap> D := DigraphReflexiveTransitiveClosure(D);
<immutable preorder digraph with 10 vertices, 55 edges>
gap> IsModularLatticeDigraph(D);
true
gap> D := Digraph([[2, 4], [3, 5], [9], [5, 6], [7], [7, 8], [9], [9], []]);
<immutable digraph with 9 vertices, 12 edges>
gap> D := DigraphReflexiveTransitiveClosure(D);
<immutable preorder digraph with 9 vertices, 34 edges>
gap> IsModularLatticeDigraph(D);
false
gap> M3 := Digraph([[2, 3, 4], [5], [5], [5], []]);
<immutable digraph with 5 vertices, 6 edges>
gap> M3 := DigraphReflexiveTransitiveClosure(M3);
<immutable preorder digraph with 5 vertices, 12 edges>
gap> IsModularLatticeDigraph(M3);
true

# IsPartialOrderDigraph
gap> gr := NullDigraph(5);
<immutable empty digraph with 5 vertices>
Expand Down
Loading