Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FIX: Robust loss error calculation #1161

Merged
merged 3 commits into from
Jul 1, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions gtsam/linear/NoiseModel.h
Original file line number Diff line number Diff line change
Expand Up @@ -697,6 +697,12 @@ namespace gtsam {
return robust_->loss(std::sqrt(squared_distance));
}

// NOTE: This is special because in whiten the base version will do the reweighting
// which is incorrect!
double squaredMahalanobisDistance(const Vector& v) const override {
return noise_->squaredMahalanobisDistance(v);
}

// These are really robust iterated re-weighting support functions
virtual void WhitenSystem(Vector& b) const;
void WhitenSystem(std::vector<Matrix>& A, Vector& b) const override;
Expand Down
5 changes: 3 additions & 2 deletions gtsam/linear/tests/testNoiseModel.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -661,12 +661,13 @@ TEST(NoiseModel, robustNoiseDCS)
TEST(NoiseModel, robustNoiseL2WithDeadZone)
{
double dead_zone_size = 1.0;
SharedNoiseModel robust = noiseModel::Robust::Create(
auto robust = noiseModel::Robust::Create(
noiseModel::mEstimator::L2WithDeadZone::Create(dead_zone_size),
Unit::Create(3));

for (int i = 0; i < 5; i++) {
Vector3 error = Vector3(i, 0, 0);
Vector error = Vector3(i, 0, 0);
robust->WhitenSystem(error);
DOUBLES_EQUAL(std::fmax(0, i - dead_zone_size) * i,
robust->squaredMahalanobisDistance(error), 1e-8);
}
Expand Down
53 changes: 53 additions & 0 deletions tests/testRobust.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
/* ----------------------------------------------------------------------------

* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)

* See LICENSE for the license information

* -------------------------------------------------------------------------- */

/**
* @file testRobust.cpp
* @brief Unit tests for Robust loss functions
* @author Fan Jiang
* @author Yetong Zhang
* @date Apr 7, 2022
**/

#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>

using namespace gtsam;

TEST(RobustNoise, loss) {
// Keys.
gtsam::Key x1_key = 1;
gtsam::Key x2_key = 2;

auto gm = noiseModel::mEstimator::GemanMcClure::Create(1.0);
auto noise = noiseModel::Robust::Create(gm, noiseModel::Unit::Create(1));

auto factor = PriorFactor<double>(x1_key, 0.0, noise);
auto between_factor = BetweenFactor<double>(x1_key, x2_key, 0.0, noise);

Values values;
values.insert(x1_key, 10.0);
values.insert(x2_key, 0.0);

EXPECT_DOUBLES_EQUAL(0.49505, factor.error(values), 1e-5);
EXPECT_DOUBLES_EQUAL(0.49505, between_factor.error(values), 1e-5);
EXPECT_DOUBLES_EQUAL(0.49505, gm->loss(10.0), 1e-5);
}

int main() {
TestResult tr;

return TestRegistry::runAllTests(tr);
}