-
-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
Copy pathpbr.wgsl
168 lines (149 loc) · 5.88 KB
/
pbr.wgsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#import bevy_pbr::mesh_view_bindings
#import bevy_pbr::pbr_bindings
#import bevy_pbr::mesh_bindings
#import bevy_pbr::utils
#import bevy_pbr::clustered_forward
#import bevy_pbr::lighting
#import bevy_pbr::pbr_ambient
#import bevy_pbr::shadows
#import bevy_pbr::fog
#import bevy_pbr::pbr_functions
#import bevy_pbr::parallax_mapping
#import bevy_pbr::prepass_utils
#ifdef SCREEN_SPACE_AMBIENT_OCCLUSION
#import bevy_pbr::gtao_utils
#endif
struct FragmentInput {
@builtin(front_facing) is_front: bool,
@builtin(position) frag_coord: vec4<f32>,
#import bevy_pbr::mesh_vertex_output
};
@fragment
fn fragment(in: FragmentInput) -> @location(0) vec4<f32> {
let is_orthographic = view.projection[3].w == 1.0;
let V = calculate_view(in.world_position, is_orthographic);
#ifdef VERTEX_UVS
var uv = in.uv;
#ifdef VERTEX_TANGENTS
if ((material.flags & STANDARD_MATERIAL_FLAGS_DEPTH_MAP_BIT) != 0u) {
let N = in.world_normal;
let T = in.world_tangent.xyz;
let B = in.world_tangent.w * cross(N, T);
// Transform V from fragment to camera in world space to tangent space.
let Vt = vec3(dot(V, T), dot(V, B), dot(V, N));
uv = parallaxed_uv(
material.parallax_depth_scale,
material.max_parallax_layer_count,
material.max_relief_mapping_search_steps,
uv,
// Flip the direction of Vt to go toward the surface to make the
// parallax mapping algorithm easier to understand and reason
// about.
-Vt,
);
}
#endif
#endif
var output_color: vec4<f32> = material.base_color;
#ifdef VERTEX_COLORS
output_color = output_color * in.color;
#endif
#ifdef VERTEX_UVS
if ((material.flags & STANDARD_MATERIAL_FLAGS_BASE_COLOR_TEXTURE_BIT) != 0u) {
output_color = output_color * textureSample(base_color_texture, base_color_sampler, uv);
}
#endif
// NOTE: Unlit bit not set means == 0 is true, so the true case is if lit
if ((material.flags & STANDARD_MATERIAL_FLAGS_UNLIT_BIT) == 0u) {
// Prepare a 'processed' StandardMaterial by sampling all textures to resolve
// the material members
var pbr_input: PbrInput;
pbr_input.material.base_color = output_color;
pbr_input.material.reflectance = material.reflectance;
pbr_input.material.flags = material.flags;
pbr_input.material.alpha_cutoff = material.alpha_cutoff;
// TODO use .a for exposure compensation in HDR
var emissive: vec4<f32> = material.emissive;
#ifdef VERTEX_UVS
if ((material.flags & STANDARD_MATERIAL_FLAGS_EMISSIVE_TEXTURE_BIT) != 0u) {
emissive = vec4<f32>(emissive.rgb * textureSample(emissive_texture, emissive_sampler, uv).rgb, 1.0);
}
#endif
pbr_input.material.emissive = emissive;
var metallic: f32 = material.metallic;
var perceptual_roughness: f32 = material.perceptual_roughness;
#ifdef VERTEX_UVS
if ((material.flags & STANDARD_MATERIAL_FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT) != 0u) {
let metallic_roughness = textureSample(metallic_roughness_texture, metallic_roughness_sampler, uv);
// Sampling from GLTF standard channels for now
metallic = metallic * metallic_roughness.b;
perceptual_roughness = perceptual_roughness * metallic_roughness.g;
}
#endif
pbr_input.material.metallic = metallic;
pbr_input.material.perceptual_roughness = perceptual_roughness;
// TODO: Split into diffuse/specular occlusion?
var occlusion: vec3<f32> = vec3(1.0);
#ifdef VERTEX_UVS
if ((material.flags & STANDARD_MATERIAL_FLAGS_OCCLUSION_TEXTURE_BIT) != 0u) {
occlusion = vec3(textureSample(occlusion_texture, occlusion_sampler, in.uv).r);
}
#endif
#ifdef SCREEN_SPACE_AMBIENT_OCCLUSION
let ssao = textureLoad(screen_space_ambient_occlusion_texture, vec2<i32>(in.frag_coord.xy), 0i).r;
let ssao_multibounce = gtao_multibounce(ssao, pbr_input.material.base_color.rgb);
occlusion = min(occlusion, ssao_multibounce);
#endif
pbr_input.occlusion = occlusion;
pbr_input.frag_coord = in.frag_coord;
pbr_input.world_position = in.world_position;
pbr_input.world_normal = prepare_world_normal(
in.world_normal,
(material.flags & STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u,
in.is_front,
);
pbr_input.is_orthographic = is_orthographic;
#ifdef LOAD_PREPASS_NORMALS
pbr_input.N = prepass_normal(in.frag_coord, 0u);
#else
pbr_input.N = apply_normal_mapping(
material.flags,
pbr_input.world_normal,
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
in.world_tangent,
#endif
#endif
#ifdef VERTEX_UVS
uv,
#endif
);
#endif
pbr_input.V = V;
pbr_input.occlusion = occlusion;
pbr_input.flags = mesh.flags;
output_color = pbr(pbr_input);
} else {
output_color = alpha_discard(material, output_color);
}
// fog
if (fog.mode != FOG_MODE_OFF && (material.flags & STANDARD_MATERIAL_FLAGS_FOG_ENABLED_BIT) != 0u) {
output_color = apply_fog(fog, output_color, in.world_position.xyz, view.world_position.xyz);
}
#ifdef TONEMAP_IN_SHADER
output_color = tone_mapping(output_color);
#ifdef DEBAND_DITHER
var output_rgb = output_color.rgb;
output_rgb = powsafe(output_rgb, 1.0 / 2.2);
output_rgb = output_rgb + screen_space_dither(in.frag_coord.xy);
// This conversion back to linear space is required because our output texture format is
// SRGB; the GPU will assume our output is linear and will apply an SRGB conversion.
output_rgb = powsafe(output_rgb, 2.2);
output_color = vec4(output_rgb, output_color.a);
#endif
#endif
#ifdef PREMULTIPLY_ALPHA
output_color = premultiply_alpha(material.flags, output_color);
#endif
return output_color;
}