Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore(behavior_velocity): add system delay parameter and minor update #764

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
pass_judge: "smooth_velocity" # [-] candidate is "smooth_velocity" or "current_velocity"
filter_occupancy_grid: true # [-] whether to filter occupancy grid by morphologyEx or not
use_object_info: true # [-] whether to reflect object info to occupancy grid map or not
use_moving_object_ray_cast: true # [-] whether to reflect moving object ray_cast to occupancy grid map or not
use_partition_lanelet: true # [-] whether to use partition lanelet map data
pedestrian_vel: 1.5 # [m/s] assume pedestrian is dashing from occlusion at this velocity
pedestrian_radius: 0.3 # [m] assume pedestrian width(0.2m) + margin(0.1m)
Expand All @@ -30,5 +31,5 @@
min_longitudinal_offset: 1.0 # [m] detection area safety buffer from front bumper.
max_lateral_distance: 6.0 # [m] buffer around the ego path used to build the detection area.
grid:
free_space_max: 40 # [-] maximum value of a free space cell in the occupancy grid
occupied_min: 60 # [-] minimum value of an occupied cell in the occupancy grid
free_space_max: 43 # [-] maximum value of a free space cell in the occupancy grid
occupied_min: 58 # [-] minimum value of an occupied cell in the occupancy grid
1 change: 1 addition & 0 deletions planning/behavior_velocity_planner/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,4 +52,5 @@ So for example, in order to stop at a stop line with the vehicles' front on the
| `forward_path_length` | double | forward path length |
| `backward_path_length` | double | backward path length |
| `max_accel` | double | (to be a global parameter) max acceleration of the vehicle |
| `system_delay` | double | (to be a global parameter) delay time until output control command |
| `delay_response_time` | double | (to be a global parameter) delay time of the vehicle's response to control commands |
Original file line number Diff line number Diff line change
Expand Up @@ -31,5 +31,5 @@
min_longitudinal_offset: 1.0 # [m] detection area safety buffer from front bumper.
max_lateral_distance: 6.0 # [m] buffer around the ego path used to build the detection area.
grid:
free_space_max: 40 # [-] maximum value of a free space cell in the occupancy grid
occupied_min: 60 # [-] minimum value of an occupied cell in the occupancy grid
free_space_max: 43 # [-] maximum value of a free space cell in the occupancy grid
occupied_min: 58 # [-] minimum value of an occupied cell in the occupancy grid
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ struct PlannerData
max_stop_acceleration_threshold = node.declare_parameter(
"max_accel", -5.0); // TODO(someone): read min_acc in velocity_controller.param.yaml?
max_stop_jerk_threshold = node.declare_parameter("max_jerk", -5.0);
system_delay = node.declare_parameter("system_delay", 0.50);
delay_response_time = node.declare_parameter("delay_response_time", 0.50);
}
// tf
Expand Down Expand Up @@ -97,6 +98,7 @@ struct PlannerData
// additional parameters
double max_stop_acceleration_threshold;
double max_stop_jerk_threshold;
double system_delay;
double delay_response_time;
double stop_line_extend_length;

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -218,7 +218,9 @@ void clipPathByLength(
//!< @brief extract target vehicles
bool isStuckVehicle(const PredictedObject & obj, const double min_vel);
bool isMovingVehicle(const PredictedObject & obj, const double min_vel);
std::vector<PredictedObject> extractVehicles(const PredictedObjects::ConstSharedPtr objects_ptr);
std::vector<PredictedObject> extractVehicles(
const PredictedObjects::ConstSharedPtr objects_ptr, const Point ego_position,
const double distance);
std::vector<PredictedObject> filterVehiclesByDetectionArea(
const std::vector<PredictedObject> & objs, const Polygons2d & polys);
bool isVehicle(const ObjectClassification & obj_class);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -488,11 +488,10 @@ void denoiseOccupancyGridCV(
cv::Scalar(grid_utils::occlusion_cost_value::OCCUPIED));
toQuantizedImage(occupancy_grid, &cv_image, param);

//! show orignal occupancy grid to compare difference
//! show original occupancy grid to compare difference
if (is_show_debug_window) {
cv::namedWindow("original", cv::WINDOW_NORMAL);
cv::imshow("original", cv_image);
cv::waitKey(1);
}

//! raycast object shadow using vehicle
Expand All @@ -503,7 +502,6 @@ void denoiseOccupancyGridCV(
if (is_show_debug_window) {
cv::namedWindow("object ray shadow", cv::WINDOW_NORMAL);
cv::imshow("object ray shadow", cv_image);
cv::waitKey(1);
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -59,8 +59,8 @@ OcclusionSpotModuleManager::OcclusionSpotModuleManager(rclcpp::Node & node)
}
}
pp.filter_occupancy_grid = node.declare_parameter(ns + ".filter_occupancy_grid", false);
pp.use_object_info = node.declare_parameter(ns + ".use_object_info", false);
pp.use_moving_object_ray_cast = node.declare_parameter(ns + ".use_moving_object_ray_cast", false);
pp.use_object_info = node.declare_parameter(ns + ".use_object_info", true);
pp.use_moving_object_ray_cast = node.declare_parameter(ns + ".use_moving_object_ray_cast", true);
pp.use_partition_lanelet = node.declare_parameter(ns + ".use_partition_lanelet", false);
pp.pedestrian_vel = node.declare_parameter(ns + ".pedestrian_vel", 1.5);
pp.pedestrian_radius = node.declare_parameter(ns + ".pedestrian_radius", 0.5);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -216,11 +216,17 @@ bool isMovingVehicle(const PredictedObject & obj, const double min_vel)
return std::abs(obj_vel) > min_vel;
}

std::vector<PredictedObject> extractVehicles(const PredictedObjects::ConstSharedPtr objects_ptr)
std::vector<PredictedObject> extractVehicles(
const PredictedObjects::ConstSharedPtr objects_ptr, const Point ego_position,
const double distance)
{
std::vector<PredictedObject> vehicles;
for (const auto & obj : objects_ptr->objects) {
if (occlusion_spot_utils::isVehicle(obj)) {
const auto & o = obj.kinematics.initial_pose_with_covariance.pose.position;
const auto & p = ego_position;
// Don't consider far vehicle
if (std::hypot(p.x - o.x, p.y - o.y) > distance) continue;
vehicles.emplace_back(obj);
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,8 @@ void applySafeVelocityConsideringPossibleCollision(
(l_obs < 0 && v0 <= v_safe)
? v_safe
: planning_utils::calcDecelerationVelocityFromDistanceToTarget(j_min, a_min, a0, v0, l_obs);
// skip non effective velocity insertion
if (original_vel < v_safe) continue;
// compare safe velocity consider EBS, minimum allowed velocity and original velocity
const double safe_velocity = calculateInsertVelocity(v_slow_down, v_safe, v_min, original_vel);
possible_collision.obstacle_info.safe_motion.safe_velocity = safe_velocity;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -92,8 +92,7 @@ bool OcclusionSpotModule::modifyPathVelocity(
param_.v.max_stop_accel = planner_data_->max_stop_acceleration_threshold;
param_.v.v_ego = planner_data_->current_velocity->twist.linear.x;
param_.v.a_ego = planner_data_->current_accel.get();
// introduce delay ratio until system delay param will introduce
param_.v.delay_time = 0.5;
param_.v.delay_time = planner_data_->system_delay;
const double detection_area_offset = 5.0; // for visualization and stability
param_.detection_area_max_length =
planning_utils::calcJudgeLineDistWithJerkLimit(
Expand Down Expand Up @@ -137,7 +136,8 @@ bool OcclusionSpotModule::modifyPathVelocity(
}
DEBUG_PRINT(show_time, "extract[ms]: ", stop_watch_.toc("processing_time", true));
const auto objects_ptr = planner_data_->predicted_objects;
const auto vehicles = utils::extractVehicles(objects_ptr);
const auto vehicles =
utils::extractVehicles(objects_ptr, ego_pose.position, param_.detection_area_length);
const std::vector<PredictedObject> filtered_vehicles =
utils::filterVehiclesByDetectionArea(vehicles, debug_data_.detection_area_polygons);
DEBUG_PRINT(show_time, "filter obj[ms]: ", stop_watch_.toc("processing_time", true));
Expand Down