awesome-align
is a tool that can extract word alignments from multilingual BERT (mBERT) and allows you to fine-tune mBERT on parallel corpora for better alignment quality (see our paper for more details).
First, you need to install the dependencies:
pip install -r requirements.txt
Inputs should be tokenized and each line is a source language sentence and its target language translation, separated by (|||
). You can see some examples in the examples
folder.
Here is an example of extracting word alignments from multilingual BERT:
DATA_FILE=/path/to/data/file
MODEL_NAME_OR_PATH=bert-base-multilingual-cased
OUTPUT_FILE=/path/to/output/file
CUDA_VISIBLE_DEVICES=0 python run_align.py \
--output_file=$OUTPUT_FILE \
--model_name_or_path=$MODEL_NAME_OR_PATH \
--data_file=$DATA_FILE \
--extraction 'softmax' \
--batch_size 32 \
This produces outputs in the i-j
Pharaoh format. A pair i-j
indicates that the ith word (zero-indexed) of the source sentence is aligned to the jth word of the target sentence.
You can also set MODEL_NAME_OR_PATH
to the path of your fine-tuned model as shown below.
If there is parallel data available, you can fine-tune embedding models on that data.
Here is an example of fine-tuning mBERT that balances well between efficiency and effectiveness:
TRAIN_FILE=/path/to/train/file
EVAL_FILE=/path/to/eval/file
OUTPUT_DIR=/path/to/output/directory
CUDA_VISIBLE_DEVICES=0 python run_train.py \
--output_dir=$OUTPUT_DIR \
--model_name_or_path=bert-base-multilingual-cased \
--extraction 'softmax' \
--do_train \
--train_tlm \
--train_so \
--train_data_file=$TRAIN_FILE \
--per_gpu_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--num_train_epochs 1 \
--learning_rate 2e-5 \
--save_steps 4000 \
--max_steps 20000 \
--do_eval \
--eval_data_file=$EVAL_FILE \
You can also fine-tune the model a bit longer with more training objectives for better quality:
TRAIN_FILE=/path/to/train/file
EVAL_FILE=/path/to/eval/file
OUTPUT_DIR=/path/to/output/directory
CUDA_VISIBLE_DEVICES=0 python run_train.py \
--output_dir=$OUTPUT_DIR \
--model_name_or_path=bert-base-multilingual-cased \
--extraction 'softmax' \
--do_train \
--train_mlm \
--train_tlm \
--train_tlm_full \
--train_so \
--train_psi \
--train_data_file=$TRAIN_FILE \
--per_gpu_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--num_train_epochs 1 \
--learning_rate 2e-5 \
--save_steps 10000 \
--max_steps 40000 \
--do_eval \
--eval_data_file=$EVAL_FILE \
If you want high alignment recalls, you can turn on the --train_co
option, but note that the alignment precisions may drop.
The following table shows the alignment error rates (AERs) of our models and popular statistical word aligners on five language pairs. The De-En, Fr-En, Ro-En datasets can be obtained following this repo, the Ja-En data is from this link and the Zh-En data is available at this link. The best scores are in bold.
De-En | Fr-En | Ro-En | Ja-En | Zh-En | |
---|---|---|---|---|---|
fast_align | 27.0 | 10.5 | 32.1 | 51.1 | 38.1 |
eflomal | 22.6 | 8.2 | 25.1 | 47.5 | 28.7 |
Mgiza | 20.6 | 5.9 | 26.4 | 48.0 | 35.1 |
Ours (w/o fine-tuning, softmax) | 17.4 | 5.6 | 27.9 | 45.6 | 18.1 |
Ours (multilingually fine-tuned w/o --train_co , softmax) [Download] |
15.2 | 4.1 | 22.6 | 37.4 | 13.4 |
Ours (multilingually fine-tuned w/ --train_co , softmax) [Download] |
15.1 | 4.5 | 20.7 | 38.4 | 14.5 |
If you use our tool, we'd appreciate if you cite the following paper:
@inproceedings{dou2021word,
title={Word Alignment by Fine-tuning Embeddings on Parallel Corpora},
author={Dou, Zi-Yi and Neubig, Graham},
booktitle={Conference of the European Chapter of the Association for Computational Linguistics (EACL)},
year={2021}
}
Some of the code is borrowed from HuggingFace Transformers licensed under Apache 2.0 and the entmax implementation is from this repo.