forked from neulab/awesome-align
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactivations.py
51 lines (38 loc) · 1.38 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import math
import torch
import torch.nn.functional as F
def swish(x):
return x * torch.sigmoid(x)
def _gelu_python(x):
""" Original Implementation of the gelu activation function in Google Bert repo when initially created.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
This is now written in C in torch.nn.functional
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
if torch.__version__ < "1.4.0":
gelu = _gelu_python
else:
gelu = F.gelu
def gelu_new(x):
""" Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT).
Also see https://arxiv.org/abs/1606.08415
"""
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
ACT2FN = {
"relu": F.relu,
"swish": swish,
"gelu": gelu,
"tanh": F.tanh,
"gelu_new": gelu_new,
}
def get_activation(activation_string):
if activation_string in ACT2FN:
return ACT2FN[activation_string]
else:
raise KeyError(
"function {} not found in ACT2FN mapping {} or torch.nn.functional".format(
activation_string, list(ACT2FN.keys())
)
)