Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add interactive method to distributions #145

Merged
merged 4 commits into from
Dec 17, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 18 additions & 13 deletions preliz/distributions/continuous.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# pylint: disable=too-many-lines
# pylint: disable=too-many-instance-attributes
# pylint: disable=invalid-name
# pylint: disable=attribute-defined-outside-init
"""
Continuous probability distributions.
"""
Expand Down Expand Up @@ -87,31 +88,33 @@ def __init__(self, alpha=None, beta=None, mu=None, sigma=None, kappa=None):
self.name = "beta"
self.dist = stats.beta
self.support = (0, 1)
self.params_support = ((eps, np.inf), (eps, np.inf))
self.alpha, self.beta, self.param_names = self._parametrization(
alpha, beta, mu, sigma, kappa
)
if self.alpha is not None and self.beta is not None:
self._update(self.alpha, self.beta)
self._parametrization(alpha, beta, mu, sigma, kappa)

def _parametrization(self, alpha, beta, mu, sigma, kappa):
def _parametrization(self, alpha=None, beta=None, mu=None, sigma=None, kappa=None):
if mu is None and sigma is None:
names = ("alpha", "beta")
self.params_support = ((eps, np.inf), (eps, np.inf))

elif mu is not None and sigma is not None:
alpha, beta = self._from_mu_sigma(mu, sigma)
names = ("mu", "sigma")
self.params_support = ((eps, 1 - eps), (eps, (mu * (1 - mu)) ** 0.5))

elif mu is not None and kappa is not None:
alpha, beta = self._from_mu_kappa(mu, kappa)
names = ("mu", "kappa")
self.params_support = ((eps, 1 - eps), (eps, np.inf))

else:
raise ValueError(
"Incompatible parametrization. Either use alpha " "and beta, or mu and sigma."
)

return alpha, beta, names
self.alpha = alpha
self.beta = beta
self.param_names = names
if self.alpha is not None and self.beta is not None:
self._update(self.alpha, self.beta)

def _from_mu_sigma(self, mu, sigma):
kappa = mu * (1 - mu) / sigma**2 - 1
Expand Down Expand Up @@ -1526,11 +1529,9 @@ def __init__(self, mu=None, sigma=None, tau=None):
self.dist = stats.norm
self.support = (-np.inf, np.inf)
self.params_support = ((-np.inf, np.inf), (eps, np.inf))
self.mu, self.sigma, self.param_names = self._parametrization(mu, sigma, tau)
if self.mu is not None and self.sigma is not None:
self._update(self.mu, self.sigma)
self._parametrization(mu, sigma, tau)

def _parametrization(self, mu, sigma, tau):
def _parametrization(self, mu=None, sigma=None, tau=None):
if sigma is not None and tau is not None:
raise ValueError(
"Incompatible parametrization. Either use mu and sigma, or mu and tau."
Expand All @@ -1543,7 +1544,11 @@ def _parametrization(self, mu, sigma, tau):
sigma = from_precision(tau)
names = ("mu", "tau")

return mu, sigma, names
self.mu = mu
self.sigma = sigma
self.param_names = names
if mu is not None and sigma is not None:
self._update(mu, sigma)

def _get_frozen(self):
frozen = None
Expand Down
80 changes: 80 additions & 0 deletions preliz/distributions/distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@
# pylint: disable=no-member
from collections import namedtuple

from ipywidgets import interact
import ipywidgets as ipyw
import numpy as np

from ..utils.plot_utils import plot_pdfpmf, plot_cdf, plot_ppf
Expand Down Expand Up @@ -327,6 +329,84 @@ def plot_ppf(
"you need to first define its parameters or use one of the fit methods"
)

def interactive(self, kind="pdf", fixed_lim="both", pointinterval=True, quantiles=None):
"""
Interactive exploration of distributions parameters

Parameters
----------
kind : str:
Type of plot. Available options are `pdf`, `cdf` and `ppf`.
fixed_lim : str or tuple
Set the limits of the x-axis and/or y-axis.
Defaults to `"both"`, the limits of both axis are fixed.
Use `"auto"` for automatic rescaling of x-axis and y-axis.
Or set them manually by passing a tuple of 4 elements,
the first two fox x-axis, the last two for x-axis. The tuple can have `None`.
pointinterval : bool
Whether to include a plot of the quantiles. Defaults to False. If True the default is to
plot the median and two interquantiles ranges.
quantiles : list
Values of the five quantiles to use when ``pointinterval=True`` if None (default)
the values ``[0.05, 0.25, 0.5, 0.75, 0.95]`` will be used. The number of elements
should be 5, 3, 1 or 0 (in this last case nothing will be plotted).
"""

# temporary patch until we migrate all distributions to use
# self.params_report and self.params
try:
params_value = self.params_report
except AttributeError:
params_value = self.params

args = dict(zip(self.param_names, params_value))

if fixed_lim == "both":
self.__init__(**args)
xlim = self._finite_endpoints("full")
xvals = self.xvals("restricted")
ylim = (0, np.max(self.pdf(xvals) * 1.5))
elif isinstance(fixed_lim, tuple):
xlim = fixed_lim[:2]
ylim = fixed_lim[2:]

sliders = {}
for name, value, support in zip(self.param_names, params_value, self.params_support):
lower, upper = support
if np.isfinite(lower):
min_v = lower
else:
min_v = value - 10
if np.isfinite(upper):
max_v = upper
else:
max_v = value + 10

step = (max_v - min_v) / 100

sliders[name] = ipyw.FloatSlider(
min=min_v,
max=max_v,
step=step,
description=f"{name} ({lower:.0f}, {upper:.0f})",
value=value,
)

def plot(**args):
self.__init__(**args)
if kind == "pdf":
ax = self.plot_pdf(legend=False, pointinterval=pointinterval, quantiles=quantiles)
elif kind == "cdf":
ax = self.plot_cdf(legend=False, pointinterval=pointinterval, quantiles=quantiles)
elif kind == "ppf":
ax = self.plot_ppf(legend=False, pointinterval=pointinterval, quantiles=quantiles)
if fixed_lim != "auto" and kind != "ppf":
ax.set_xlim(*xlim)
if fixed_lim != "auto" and kind != "cdf":
ax.set_ylim(*ylim)

interact(plot, **sliders)


class Continuous(Distribution):
"""Base class for continuous distributions."""
Expand Down