-
Notifications
You must be signed in to change notification settings - Fork 28.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
SPARK-1102: Create a saveAsNewAPIHadoopDataset method #12
Conversation
Can one of the admins verify this patch? |
1 similar comment
Can one of the admins verify this patch? |
this is a re-opened PR, in the old PR, https://github.com/apache/incubator-spark/pull/636, all test cases have passed Can anyone verify that and make further review? |
I changed back the parameter type of the new method to Configuration for keeping consistent with other APIs, and whether Job should be parameter type is still under discussion |
I rebased the code after #11 was merged, and tested in my local side, I think it is ready for further review/testing |
Jenkins, test this please |
Merged build triggered. |
Merged build started. |
Merged build finished. |
One or more automated tests failed |
exceed with 5 chars....sorry.....fixed.... |
Jenkins, this is ok to test |
Merged build triggered. |
Merged build started. |
Merged build finished. |
All automated tests passed. |
This is ready to merge? |
any further comments? |
ping |
Merged build triggered. |
Merged build started. |
Merged build finished. |
All automated tests passed. |
@mateiz I have rebased the code, any further comments? |
ping |
Sorry, haven't had time to look at this lately, but will do soon. |
No problem, thanks |
Hey, sorry for the super late reply. This looks good but it would be good to add a test for |
Hi, @mateiz, thank you for reviewing this, just added the test cases for both old&new API-based saveAsHadoopDataset |
Only sparkify on mac
…askTracker to reduce the chance of the communicating problem Using AkkaUtils.askWithReply in MapOutputTracker.askTracker to reduce the chance of the communicating problem Author: YanTangZhai <hakeemzhai@tencent.com> Author: yantangzhai <tyz0303@163.com> Closes apache#3785 from YanTangZhai/SPARK-4946 and squashes the following commits: 9ca6541 [yantangzhai] [SPARK-4946] [CORE] Using AkkaUtils.askWithReply in MapOutputTracker.askTracker to reduce the chance of the communicating problem e4c2c0a [YanTangZhai] Merge pull request apache#15 from apache/master 718afeb [YanTangZhai] Merge pull request apache#12 from apache/master 6e643f8 [YanTangZhai] Merge pull request apache#11 from apache/master e249846 [YanTangZhai] Merge pull request apache#10 from apache/master d26d982 [YanTangZhai] Merge pull request apache#9 from apache/master 76d4027 [YanTangZhai] Merge pull request apache#8 from apache/master 03b62b0 [YanTangZhai] Merge pull request apache#7 from apache/master 8a00106 [YanTangZhai] Merge pull request apache#6 from apache/master cbcba66 [YanTangZhai] Merge pull request apache#3 from apache/master cdef539 [YanTangZhai] Merge pull request #1 from apache/master
Support ! boolean logic operator like NOT in sql as follows select * from for_test where !(col1 > col2) Author: YanTangZhai <hakeemzhai@tencent.com> Author: Michael Armbrust <michael@databricks.com> Closes apache#3555 from YanTangZhai/SPARK-4692 and squashes the following commits: 1a9f605 [YanTangZhai] Update HiveQuerySuite.scala 7c03c68 [YanTangZhai] Merge pull request apache#23 from apache/master 992046e [YanTangZhai] Update HiveQuerySuite.scala ea618f4 [YanTangZhai] Update HiveQuerySuite.scala 192411d [YanTangZhai] Merge pull request apache#17 from YanTangZhai/master e4c2c0a [YanTangZhai] Merge pull request apache#15 from apache/master 1e1ebb4 [YanTangZhai] Update HiveQuerySuite.scala efc4210 [YanTangZhai] Update HiveQuerySuite.scala bd2c444 [YanTangZhai] Update HiveQuerySuite.scala 1893956 [YanTangZhai] Merge pull request apache#14 from marmbrus/pr/3555 59e4de9 [Michael Armbrust] make hive test 718afeb [YanTangZhai] Merge pull request apache#12 from apache/master 950b21e [YanTangZhai] Update HiveQuerySuite.scala 74175b4 [YanTangZhai] Update HiveQuerySuite.scala 92242c7 [YanTangZhai] Update HiveQl.scala 6e643f8 [YanTangZhai] Merge pull request apache#11 from apache/master e249846 [YanTangZhai] Merge pull request apache#10 from apache/master d26d982 [YanTangZhai] Merge pull request apache#9 from apache/master 76d4027 [YanTangZhai] Merge pull request apache#8 from apache/master 03b62b0 [YanTangZhai] Merge pull request apache#7 from apache/master 8a00106 [YanTangZhai] Merge pull request apache#6 from apache/master cbcba66 [YanTangZhai] Merge pull request apache#3 from apache/master cdef539 [YanTangZhai] Merge pull request #1 from apache/master
* Support simple rsync schema in the executor uri * Support simple rsync schema in the executor uri
* Support simple rsync schema in the executor uri * Support simple rsync schema in the executor uri (cherry picked from commit b043fdb)
[SPARK-202] add CONTRIBUTING.md
ESS mapoutput metadata
…r-permission remove script vars in entrypoint
### What changes were proposed in this pull request? This PR proposes to make `PythonFunction` holds `Seq[Byte]` instead of `Array[Byte]` to be able to compare if the byte array has the same values for the cache manager. ### Why are the changes needed? Currently the cache manager doesn't use the cache for `udf` if the `udf` is created again even if the functions is the same. ```py >>> func = lambda x: x >>> df = spark.range(1) >>> df.select(udf(func)("id")).cache() ``` ```py >>> df.select(udf(func)("id")).explain() == Physical Plan == *(2) Project [pythonUDF0#14 AS <lambda>(id)#12] +- BatchEvalPython [<lambda>(id#0L)], [pythonUDF0#14] +- *(1) Range (0, 1, step=1, splits=12) ``` This is because `PythonFunction` holds `Array[Byte]`, and `equals` method of array equals only when the both array is the same instance. ### Does this PR introduce _any_ user-facing change? Yes, if the user reuse the Python function for the UDF, the cache manager will detect the same function and use the cache for it. ### How was this patch tested? I added a test case and manually. ```py >>> df.select(udf(func)("id")).explain() == Physical Plan == InMemoryTableScan [<lambda>(id)#12] +- InMemoryRelation [<lambda>(id)#12], StorageLevel(disk, memory, deserialized, 1 replicas) +- *(2) Project [pythonUDF0#5 AS <lambda>(id)#3] +- BatchEvalPython [<lambda>(id#0L)], [pythonUDF0#5] +- *(1) Range (0, 1, step=1, splits=12) ``` Closes #28774 from ueshin/issues/SPARK-31945/udf_cache. Authored-by: Takuya UESHIN <ueshin@databricks.com> Signed-off-by: HyukjinKwon <gurwls223@apache.org>
Align the dependency versions with current grid
…n properly ### What changes were proposed in this pull request? Make `ResolveRelations` handle plan id properly ### Why are the changes needed? bug fix for Spark Connect, it won't affect classic Spark SQL before this PR: ``` from pyspark.sql import functions as sf spark.range(10).withColumn("value_1", sf.lit(1)).write.saveAsTable("test_table_1") spark.range(10).withColumnRenamed("id", "index").withColumn("value_2", sf.lit(2)).write.saveAsTable("test_table_2") df1 = spark.read.table("test_table_1") df2 = spark.read.table("test_table_2") df3 = spark.read.table("test_table_1") join1 = df1.join(df2, on=df1.id==df2.index).select(df2.index, df2.value_2) join2 = df3.join(join1, how="left", on=join1.index==df3.id) join2.schema ``` fails with ``` AnalysisException: [CANNOT_RESOLVE_DATAFRAME_COLUMN] Cannot resolve dataframe column "id". It's probably because of illegal references like `df1.select(df2.col("a"))`. SQLSTATE: 42704 ``` That is due to existing plan caching in `ResolveRelations` doesn't work with Spark Connect ``` === Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations === '[#12]Join LeftOuter, '`==`('index, 'id) '[#12]Join LeftOuter, '`==`('index, 'id) !:- '[#9]UnresolvedRelation [test_table_1], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 !+- '[#11]Project ['index, 'value_2] : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#10]Join Inner, '`==`('id, 'index) +- '[#11]Project ['index, 'value_2] ! :- '[#7]UnresolvedRelation [test_table_1], [], false +- '[#10]Join Inner, '`==`('id, 'index) ! +- '[#8]UnresolvedRelation [test_table_2], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 ! : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#8]SubqueryAlias spark_catalog.default.test_table_2 ! +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_2`, [], false Can not resolve 'id with plan 7 ``` `[#7]UnresolvedRelation [test_table_1], [], false` was wrongly resolved to the cached one ``` :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ``` ### Does this PR introduce _any_ user-facing change? yes, bug fix ### How was this patch tested? added ut ### Was this patch authored or co-authored using generative AI tooling? ci Closes #45214 from zhengruifeng/connect_fix_read_join. Authored-by: Ruifeng Zheng <ruifengz@apache.org> Signed-off-by: Dongjoon Hyun <dhyun@apple.com>
…n properly ### What changes were proposed in this pull request? Make `ResolveRelations` handle plan id properly ### Why are the changes needed? bug fix for Spark Connect, it won't affect classic Spark SQL before this PR: ``` from pyspark.sql import functions as sf spark.range(10).withColumn("value_1", sf.lit(1)).write.saveAsTable("test_table_1") spark.range(10).withColumnRenamed("id", "index").withColumn("value_2", sf.lit(2)).write.saveAsTable("test_table_2") df1 = spark.read.table("test_table_1") df2 = spark.read.table("test_table_2") df3 = spark.read.table("test_table_1") join1 = df1.join(df2, on=df1.id==df2.index).select(df2.index, df2.value_2) join2 = df3.join(join1, how="left", on=join1.index==df3.id) join2.schema ``` fails with ``` AnalysisException: [CANNOT_RESOLVE_DATAFRAME_COLUMN] Cannot resolve dataframe column "id". It's probably because of illegal references like `df1.select(df2.col("a"))`. SQLSTATE: 42704 ``` That is due to existing plan caching in `ResolveRelations` doesn't work with Spark Connect ``` === Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations === '[#12]Join LeftOuter, '`==`('index, 'id) '[#12]Join LeftOuter, '`==`('index, 'id) !:- '[#9]UnresolvedRelation [test_table_1], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 !+- '[#11]Project ['index, 'value_2] : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#10]Join Inner, '`==`('id, 'index) +- '[#11]Project ['index, 'value_2] ! :- '[#7]UnresolvedRelation [test_table_1], [], false +- '[#10]Join Inner, '`==`('id, 'index) ! +- '[#8]UnresolvedRelation [test_table_2], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 ! : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#8]SubqueryAlias spark_catalog.default.test_table_2 ! +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_2`, [], false Can not resolve 'id with plan 7 ``` `[#7]UnresolvedRelation [test_table_1], [], false` was wrongly resolved to the cached one ``` :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ``` ### Does this PR introduce _any_ user-facing change? yes, bug fix ### How was this patch tested? added ut ### Was this patch authored or co-authored using generative AI tooling? ci Closes apache#45214 from zhengruifeng/connect_fix_read_join. Authored-by: Ruifeng Zheng <ruifengz@apache.org> Signed-off-by: Dongjoon Hyun <dhyun@apple.com>
…plan properly ### What changes were proposed in this pull request? Make `ResolveRelations` handle plan id properly cherry-pick bugfix #45214 to 3.5 ### Why are the changes needed? bug fix for Spark Connect, it won't affect classic Spark SQL before this PR: ``` from pyspark.sql import functions as sf spark.range(10).withColumn("value_1", sf.lit(1)).write.saveAsTable("test_table_1") spark.range(10).withColumnRenamed("id", "index").withColumn("value_2", sf.lit(2)).write.saveAsTable("test_table_2") df1 = spark.read.table("test_table_1") df2 = spark.read.table("test_table_2") df3 = spark.read.table("test_table_1") join1 = df1.join(df2, on=df1.id==df2.index).select(df2.index, df2.value_2) join2 = df3.join(join1, how="left", on=join1.index==df3.id) join2.schema ``` fails with ``` AnalysisException: [CANNOT_RESOLVE_DATAFRAME_COLUMN] Cannot resolve dataframe column "id". It's probably because of illegal references like `df1.select(df2.col("a"))`. SQLSTATE: 42704 ``` That is due to existing plan caching in `ResolveRelations` doesn't work with Spark Connect ``` === Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations === '[#12]Join LeftOuter, '`==`('index, 'id) '[#12]Join LeftOuter, '`==`('index, 'id) !:- '[#9]UnresolvedRelation [test_table_1], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 !+- '[#11]Project ['index, 'value_2] : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#10]Join Inner, '`==`('id, 'index) +- '[#11]Project ['index, 'value_2] ! :- '[#7]UnresolvedRelation [test_table_1], [], false +- '[#10]Join Inner, '`==`('id, 'index) ! +- '[#8]UnresolvedRelation [test_table_2], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 ! : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#8]SubqueryAlias spark_catalog.default.test_table_2 ! +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_2`, [], false Can not resolve 'id with plan 7 ``` `[#7]UnresolvedRelation [test_table_1], [], false` was wrongly resolved to the cached one ``` :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ``` ### Does this PR introduce _any_ user-facing change? yes, bug fix ### How was this patch tested? added ut ### Was this patch authored or co-authored using generative AI tooling? ci Closes #46291 from zhengruifeng/connect_fix_read_join_35. Authored-by: Ruifeng Zheng <ruifengz@apache.org> Signed-off-by: Ruifeng Zheng <ruifengz@apache.org>
…plan properly ### What changes were proposed in this pull request? Make `ResolveRelations` handle plan id properly cherry-pick bugfix #45214 to 3.4 ### Why are the changes needed? bug fix for Spark Connect, it won't affect classic Spark SQL before this PR: ``` from pyspark.sql import functions as sf spark.range(10).withColumn("value_1", sf.lit(1)).write.saveAsTable("test_table_1") spark.range(10).withColumnRenamed("id", "index").withColumn("value_2", sf.lit(2)).write.saveAsTable("test_table_2") df1 = spark.read.table("test_table_1") df2 = spark.read.table("test_table_2") df3 = spark.read.table("test_table_1") join1 = df1.join(df2, on=df1.id==df2.index).select(df2.index, df2.value_2) join2 = df3.join(join1, how="left", on=join1.index==df3.id) join2.schema ``` fails with ``` AnalysisException: [CANNOT_RESOLVE_DATAFRAME_COLUMN] Cannot resolve dataframe column "id". It's probably because of illegal references like `df1.select(df2.col("a"))`. SQLSTATE: 42704 ``` That is due to existing plan caching in `ResolveRelations` doesn't work with Spark Connect ``` === Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations === '[#12]Join LeftOuter, '`==`('index, 'id) '[#12]Join LeftOuter, '`==`('index, 'id) !:- '[#9]UnresolvedRelation [test_table_1], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 !+- '[#11]Project ['index, 'value_2] : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#10]Join Inner, '`==`('id, 'index) +- '[#11]Project ['index, 'value_2] ! :- '[#7]UnresolvedRelation [test_table_1], [], false +- '[#10]Join Inner, '`==`('id, 'index) ! +- '[#8]UnresolvedRelation [test_table_2], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 ! : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#8]SubqueryAlias spark_catalog.default.test_table_2 ! +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_2`, [], false Can not resolve 'id with plan 7 ``` `[#7]UnresolvedRelation [test_table_1], [], false` was wrongly resolved to the cached one ``` :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ``` ### Does this PR introduce _any_ user-facing change? yes, bug fix ### How was this patch tested? added ut ### Was this patch authored or co-authored using generative AI tooling? ci Closes #46290 from zhengruifeng/connect_fix_read_join_34. Authored-by: Ruifeng Zheng <ruifengz@apache.org> Signed-off-by: Ruifeng Zheng <ruifengz@apache.org>
…plan properly ### What changes were proposed in this pull request? Make `ResolveRelations` handle plan id properly cherry-pick bugfix apache#45214 to 3.4 ### Why are the changes needed? bug fix for Spark Connect, it won't affect classic Spark SQL before this PR: ``` from pyspark.sql import functions as sf spark.range(10).withColumn("value_1", sf.lit(1)).write.saveAsTable("test_table_1") spark.range(10).withColumnRenamed("id", "index").withColumn("value_2", sf.lit(2)).write.saveAsTable("test_table_2") df1 = spark.read.table("test_table_1") df2 = spark.read.table("test_table_2") df3 = spark.read.table("test_table_1") join1 = df1.join(df2, on=df1.id==df2.index).select(df2.index, df2.value_2) join2 = df3.join(join1, how="left", on=join1.index==df3.id) join2.schema ``` fails with ``` AnalysisException: [CANNOT_RESOLVE_DATAFRAME_COLUMN] Cannot resolve dataframe column "id". It's probably because of illegal references like `df1.select(df2.col("a"))`. SQLSTATE: 42704 ``` That is due to existing plan caching in `ResolveRelations` doesn't work with Spark Connect ``` === Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations === '[apache#12]Join LeftOuter, '`==`('index, 'id) '[apache#12]Join LeftOuter, '`==`('index, 'id) !:- '[apache#9]UnresolvedRelation [test_table_1], [], false :- '[apache#9]SubqueryAlias spark_catalog.default.test_table_1 !+- '[apache#11]Project ['index, 'value_2] : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[apache#10]Join Inner, '`==`('id, 'index) +- '[apache#11]Project ['index, 'value_2] ! :- '[apache#7]UnresolvedRelation [test_table_1], [], false +- '[apache#10]Join Inner, '`==`('id, 'index) ! +- '[apache#8]UnresolvedRelation [test_table_2], [], false :- '[apache#9]SubqueryAlias spark_catalog.default.test_table_1 ! : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[apache#8]SubqueryAlias spark_catalog.default.test_table_2 ! +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_2`, [], false Can not resolve 'id with plan 7 ``` `[apache#7]UnresolvedRelation [test_table_1], [], false` was wrongly resolved to the cached one ``` :- '[apache#9]SubqueryAlias spark_catalog.default.test_table_1 +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ``` ### Does this PR introduce _any_ user-facing change? yes, bug fix ### How was this patch tested? added ut ### Was this patch authored or co-authored using generative AI tooling? ci Closes apache#46290 from zhengruifeng/connect_fix_read_join_34. Authored-by: Ruifeng Zheng <ruifengz@apache.org> Signed-off-by: Ruifeng Zheng <ruifengz@apache.org> (cherry picked from commit 5f58fa7)
https://spark-project.atlassian.net/browse/SPARK-1102
Create a saveAsNewAPIHadoopDataset method
By @mateiz: "Right now RDDs can only be saved as files using the new Hadoop API, not as "datasets" with no filename and just a JobConf. See http://codeforhire.com/2014/02/18/using-spark-with-mongodb/ for an example of how you have to give a bogus filename. For the old Hadoop API, we have saveAsHadoopDataset."