Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Quantized Elemwise Mul Operator #17147

Merged
merged 12 commits into from
Dec 26, 2019
64 changes: 64 additions & 0 deletions src/operator/quantization/quantized_elemwise_mul-inl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file quantized_elemwise_mul.cc
* \brief CPU Implementation of basic elementwise binary mul operators
*/
#ifndef MXNET_OPERATOR_QUANTIZATION_QUANTIZED_ELEMWISE_MUL_INL_H_
#define MXNET_OPERATOR_QUANTIZATION_QUANTIZED_ELEMWISE_MUL_INL_H_

#include "../tensor/elemwise_binary_op-inl.h"

namespace mxnet {
namespace op {
/* These structure is used for requantization only when fusion */
struct QuantizeElemwiseMulParam : public dmlc::Parameter<QuantizeElemwiseMulParam> {
dmlc::optional<float> min_calib_range;
dmlc::optional<float> max_calib_range;
bool enable_float_output;
DMLC_DECLARE_PARAMETER(QuantizeElemwiseMulParam) {
DMLC_DECLARE_FIELD(min_calib_range)
.set_default(dmlc::optional<float>())
.describe("The minimum scalar value in the form of float32 obtained "
"through calibration. If present, it will be used to requantize the "
"int8 output data.");
DMLC_DECLARE_FIELD(max_calib_range)
.set_default(dmlc::optional<float>())
.describe("The maximum scalar value in the form of float32 obtained "
"through calibration. If present, it will be used to requantize the "
"int8 output data.");
DMLC_DECLARE_FIELD(enable_float_output).set_default(false)
.describe("Whether to enable float32 output");
}
};

namespace quantized_elemwise_mul {
enum QuantizedElemwiseMulOpInputs {kLhs, kRhs, kLhsMin, kLhsMax, kRhsMin, kRhsMax};
enum QuantizedElemwiseMulOpOutputs {kOut, kOutMin, kOutMax};
enum QuantizedElemwiseMulOpResource {kTempSpace};
} // namespace quantized embedding



} // namespace op
} // namespace mxnet

#endif // MXNET_OPERATOR_QUANTIZATION_QUANTIZED_ELEMWISE_MUL_INL_H_
261 changes: 261 additions & 0 deletions src/operator/quantization/quantized_elemwise_mul.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file quantized_elemwise_mul.cc
* \brief CPU Implementation of basic elementwise binary mul operators
*/
#include <mxnet/op_attr_types.h>
#include "../tensor/elemwise_binary_op-inl.h"
#include "./quantized_elemwise_mul-inl.h"
#include "./quantization_utils.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(QuantizeElemwiseMulParam);

static std::vector<std::string> QuantizedElemwiseMulOutputNames(const NodeAttrs &attrs) {
const QuantizeElemwiseMulParam& params = nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
if (params.enable_float_output)
return std::vector<std::string>{"output"};
else
return std::vector<std::string>{"output", "min_output", "max_output"};
}

inline bool QuantizedElemwiseMulOpShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector *in_attrs,
mxnet::ShapeVector *out_attrs) {
using namespace mshadow;
const QuantizeElemwiseMulParam& params = nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
const mxnet::TShape &lshape = (*in_attrs)[quantized_elemwise_mul::kLhs];
const mxnet::TShape &rshape = (*in_attrs)[quantized_elemwise_mul::kRhs];
if (!ndim_is_known(lshape) || !ndim_is_known(rshape)) return false;
CHECK_EQ(lshape.ndim(), rshape.ndim()) << "Currently, quantized elemwise multiply doesn't support broadcast.";
for (int i = 0; i < lshape.ndim(); ++i) {
CHECK_EQ(lshape[i], rshape[i]);
}
SHAPE_ASSIGN_CHECK(*in_attrs, quantized_elemwise_mul::kLhsMin, mxnet::TShape(1, 1));
SHAPE_ASSIGN_CHECK(*in_attrs, quantized_elemwise_mul::kLhsMax, mxnet::TShape(1, 1));
SHAPE_ASSIGN_CHECK(*in_attrs, quantized_elemwise_mul::kRhsMin, mxnet::TShape(1, 1));
SHAPE_ASSIGN_CHECK(*in_attrs, quantized_elemwise_mul::kRhsMax, mxnet::TShape(1, 1));

out_attrs->clear();
mxnet::TShape oshape(lshape);
SHAPE_ASSIGN_CHECK(*out_attrs, quantized_elemwise_mul::kOut, oshape);
if (!params.enable_float_output) {
SHAPE_ASSIGN_CHECK(*out_attrs, quantized_elemwise_mul::kOutMin, mxnet::TShape(1, 1));
SHAPE_ASSIGN_CHECK(*out_attrs, quantized_elemwise_mul::kOutMax, mxnet::TShape(1, 1));
}
return true;
}

inline bool QuantizedElemwiseMulOpType(const nnvm::NodeAttrs& attrs,
std::vector<int> *in_type,
std::vector<int> *out_type) {
const QuantizeElemwiseMulParam& params = nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
for (int i = 0; i < 2; ++i) {
if (in_type->at(i) == mshadow::kInt8) {
TYPE_ASSIGN_CHECK(*in_type, i, mshadow::kInt8);
} else {
LOG(ERROR) << "currently, quantized elemwise mul only support int8 inputs.";
}
}
TYPE_ASSIGN_CHECK(*in_type, quantized_elemwise_mul::kLhsMin, mshadow::kFloat32);
TYPE_ASSIGN_CHECK(*in_type, quantized_elemwise_mul::kLhsMax, mshadow::kFloat32);
TYPE_ASSIGN_CHECK(*in_type, quantized_elemwise_mul::kRhsMin, mshadow::kFloat32);
TYPE_ASSIGN_CHECK(*in_type, quantized_elemwise_mul::kRhsMax, mshadow::kFloat32);

int dtype = mshadow::kInt32;
if (params.max_calib_range.has_value() && params.min_calib_range.has_value()) {
dtype = mshadow::kInt8;
}
if (!params.enable_float_output) {
TYPE_ASSIGN_CHECK(*out_type, quantized_elemwise_mul::kOut, dtype);
TYPE_ASSIGN_CHECK(*out_type, quantized_elemwise_mul::kOutMin, mshadow::kFloat32);
TYPE_ASSIGN_CHECK(*out_type, quantized_elemwise_mul::kOutMax, mshadow::kFloat32);
} else {
TYPE_ASSIGN_CHECK(*out_type, quantized_elemwise_mul::kOut, mshadow::kFloat32);
}
return true;
}

inline bool QuantizedElemwiseMulOpStorageType(const nnvm::NodeAttrs& attrs,
int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
using namespace common;
*dispatch_mode = DispatchMode::kFCompute;

for (auto &v : *out_attrs) {
v = kDefaultStorage;
if (common::stype_string(v).compare("unknown") == 0) {
return false;
}
}

for (auto &v : *in_attrs) {
v = kDefaultStorage;
if (common::stype_string(v).compare("unknown") == 0) {
return false;
}
}
return true;
}

void QuantizedElemwiseMulOpForward(const nnvm::NodeAttrs &attrs,
const OpContext &ctx,
const std::vector<TBlob> &inputs,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &outputs) {
const QuantizeElemwiseMulParam& params = nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
using namespace mxnet_op;

float lhs_min = inputs[quantized_elemwise_mul::kLhsMin].dptr<float>()[0];
float lhs_max = inputs[quantized_elemwise_mul::kLhsMax].dptr<float>()[0];
float rhs_min = inputs[quantized_elemwise_mul::kRhsMin].dptr<float>()[0];
float rhs_max = inputs[quantized_elemwise_mul::kRhsMax].dptr<float>()[0];

float cached_output_min_ = 0.f;
float cached_output_max_ = 0.f;
float out_data_scale = 1.f;
float out_scale = 1.f;
if (!params.enable_float_output) {
float output_data_range = kInt32Range;
// dataA && dataB are int8
if (outputs[quantized_elemwise_mul::kOut].type_flag_ == mshadow::kInt8) {
output_data_range = kInt8Range;
} else {
output_data_range = kInt32Range;
}
if (params.max_calib_range.has_value() && params.min_calib_range.has_value()) {
cached_output_min_ = params.min_calib_range.value();
cached_output_max_ = params.max_calib_range.value();
out_data_scale = output_data_range / MaxAbs(cached_output_min_, cached_output_max_);
auto lhs_scale = kInt8Range / MaxAbs(lhs_min, lhs_max);
auto rhs_scale = kInt8Range / MaxAbs(rhs_min, rhs_max);
out_scale = out_data_scale / lhs_scale / rhs_scale;
} else {
Stream<cpu> *s = ctx.get_stream<cpu>();
if (inputs[quantized_elemwise_mul::kLhs].type_flag_ == mshadow::kInt8 &&
inputs[quantized_elemwise_mul::kRhs].type_flag_ == mshadow::kInt8) {
mxnet_op::Kernel<QuantizationRangeForS8S8MultiplicationStruct, cpu>::Launch(
s, 1, &cached_output_min_, &cached_output_max_, &lhs_min, &lhs_max, &rhs_min, &rhs_max);
} else {
LOG(ERROR) << "lhs and rhs only support iny8 dtype.";
}
}
} else {
auto lhs_scale = kInt8Range / MaxAbs(lhs_min, lhs_max);
auto rhs_scale = kInt8Range / MaxAbs(rhs_min, rhs_max);
out_scale = 1.0 / lhs_scale / rhs_scale;
}

size_t out_size = outputs[quantized_elemwise_mul::kOut].Size();
auto *input_l = inputs[quantized_elemwise_mul::kLhs].dptr<int8_t>();
auto *input_r = inputs[quantized_elemwise_mul::kRhs].dptr<int8_t>();
// TODO(Xinyu): a temp solution to enable Elemwise INT8 computation,
// will be refactored after the DNNL primitive is done.
if (!params.enable_float_output) {
if (params.max_calib_range.has_value() && params.min_calib_range.has_value()) {
typedef int8_t out_type;
auto *out_data = outputs[quantized_elemwise_mul::kOut].dptr<out_type>();
#pragma omp simd
for (size_t i = 0; i < out_size; ++i) {
const int8_t a = input_l[i];
const int8_t b = input_r[i];
out_data[i] = static_cast<out_type>(a * b * out_scale);
}
} else {
typedef int32_t out_type;
auto *out_data = outputs[quantized_elemwise_mul::kOut].dptr<out_type>();
#pragma omp simd
for (size_t i = 0; i < out_size; ++i) {
const int8_t a = input_l[i];
const int8_t b = input_r[i];
out_data[i] = static_cast<out_type>(a * b * out_scale);
}
}
} else {
typedef float_t out_type;
auto *out_data = outputs[quantized_elemwise_mul::kOut].dptr<out_type>();
#pragma omp simd
for (size_t i = 0; i < out_size; ++i) {
const int8_t a = input_l[i];
const int8_t b = input_r[i];
out_data[i] = static_cast<out_type>(a * b * out_scale);
}
}

if (!params.enable_float_output) {
outputs[quantized_elemwise_mul::kOutMin].dptr<float>()[0] = cached_output_min_;
outputs[quantized_elemwise_mul::kOutMax].dptr<float>()[0] = cached_output_max_;
}
}

NNVM_REGISTER_OP(_contrib_quantized_elemwise_mul)
.describe(R"code(Multiplies arguments int8 element-wise.
)code" ADD_FILELINE)
.set_num_inputs(6)
.set_num_outputs([](const NodeAttrs& attrs) {
const QuantizeElemwiseMulParam& params = nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
return (!params.enable_float_output) ? 3 : 1;
})
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"lhs", "rhs", "lhs_min", "lhs_max", "rhs_min", "rhs_max"};
})
.set_attr<nnvm::FListOutputNames>("FListOutputNames", QuantizedElemwiseMulOutputNames)
.set_attr<mxnet::FInferShape>("FInferShape", QuantizedElemwiseMulOpShape)
.set_attr<nnvm::FInferType>("FInferType", QuantizedElemwiseMulOpType)
.set_attr<FInferStorageType>("FInferStorageType", QuantizedElemwiseMulOpStorageType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", QuantizedElemwiseMulOpForward)
// TODO(Xinyu): a temp solution to enable GluonCV INT8 flow,
// will be reverted after the improvement of CachedOP is done.
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.set_attr<FNeedRequantize>("FNeedRequantize", [](const NodeAttrs& attrs) { return true; })
.add_argument("lhs", "NDArray-or-Symbol", "first input")
.add_argument("rhs", "NDArray-or-Symbol", "second input")
.add_argument("lhs_min", "NDArray-or-Symbol", "Minimum value of first input.")
.add_argument("lhs_max", "NDArray-or-Symbol", "Maximum value of first input.")
.add_argument("rhs_min", "NDArray-or-Symbol", "Minimum value of second input.")
.add_argument("rhs_max", "NDArray-or-Symbol", "Maximum value of second input.")
.set_attr_parser(ParamParser<QuantizeElemwiseMulParam>)
.add_arguments(QuantizeElemwiseMulParam::__FIELDS__());

NNVM_REGISTER_OP(elemwise_mul)
.set_attr<FQuantizedOp>("FQuantizedOp", [](const NodeAttrs& attrs) {
nnvm::NodePtr node = nnvm::Node::Create();
node->attrs.op = Op::Get("_contrib_quantized_elemwise_mul");
node->attrs.name = "quantized_" + attrs.name;
node->attrs.dict = attrs.dict;
if (node->op()->attr_parser != nullptr) {
node->op()->attr_parser(&(node->attrs));
}
return node;
});

} // namespace op
} // namespace mxnet
Loading