Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

All transforms support torch and numpy #2949

Merged
merged 20 commits into from
Sep 14, 2021
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
deprecate as_tensor_output
Signed-off-by: Richard Brown <33289025+rijobro@users.noreply.github.com>
rijobro committed Sep 13, 2021
commit ee223baf1b4900676d89d79d3be9c7ec03097c98
22 changes: 17 additions & 5 deletions monai/transforms/spatial/array.py
Original file line number Diff line number Diff line change
@@ -46,6 +46,7 @@
issequenceiterable,
optional_import,
)
from monai.utils.deprecated import deprecated_arg
from monai.utils.enums import TransformBackends
from monai.utils.module import look_up_option
from monai.utils.type_conversion import convert_data_type, convert_to_dst_type
@@ -1016,12 +1017,14 @@ class AffineGrid(Transform):

backend = [TransformBackends.TORCH, TransformBackends.NUMPY]

@deprecated_arg(name="as_tensor_output", since="0.6")
def __init__(
self,
rotate_params: Optional[Union[Sequence[float], float]] = None,
shear_params: Optional[Union[Sequence[float], float]] = None,
translate_params: Optional[Union[Sequence[float], float]] = None,
scale_params: Optional[Union[Sequence[float], float]] = None,
as_tensor_output: bool = True,
device: Optional[torch.device] = None,
affine: Optional[NdarrayOrTensor] = None,
) -> None:
@@ -1082,12 +1085,14 @@ class RandAffineGrid(Randomizable, Transform):

"""

@deprecated_arg(name="as_tensor_output", since="0.6")
def __init__(
self,
rotate_range: RandRange = None,
shear_range: RandRange = None,
translate_range: RandRange = None,
scale_range: RandRange = None,
as_tensor_output: bool = True,
device: Optional[torch.device] = None,
) -> None:
"""
@@ -1173,8 +1178,9 @@ def __call__(
scale_params=self.scale_params,
device=self.device,
)
grid, self.affine = affine_grid(spatial_size, grid)
return grid
_grid: NdarrayOrTensor
_grid, self.affine = affine_grid(spatial_size, grid)
return _grid

def get_transformation_matrix(self) -> Optional[NdarrayOrTensor]:
"""Get the most recently applied transformation matrix"""
@@ -1235,10 +1241,12 @@ class Resample(Transform):

backend = [TransformBackends.TORCH]

@deprecated_arg(name="as_tensor_output", since="0.6")
def __init__(
self,
mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,
padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,
as_tensor_output: bool = True,
device: Optional[torch.device] = None,
) -> None:
"""
@@ -1331,6 +1339,7 @@ class Affine(Transform):

backend = list(set(AffineGrid.backend) & set(Resample.backend))

@deprecated_arg(name="as_tensor_output", since="0.6")
def __init__(
self,
rotate_params: Optional[Union[Sequence[float], float]] = None,
@@ -1340,6 +1349,7 @@ def __init__(
spatial_size: Optional[Union[Sequence[int], int]] = None,
mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,
padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.REFLECTION,
as_tensor_output: bool = True,
device: Optional[torch.device] = None,
image_only: bool = False,
) -> None:
@@ -1397,7 +1407,7 @@ def __call__(
spatial_size: Optional[Union[Sequence[int], int]] = None,
mode: Optional[Union[GridSampleMode, str]] = None,
padding_mode: Optional[Union[GridSamplePadMode, str]] = None,
):
) -> Union[NdarrayOrTensor, Tuple[NdarrayOrTensor, NdarrayOrTensor]]:
"""
Args:
img: shape must be (num_channels, H, W[, D]),
@@ -1429,6 +1439,7 @@ class RandAffine(RandomizableTransform):

backend = Affine.backend

@deprecated_arg(name="as_tensor_output", since="0.6")
def __init__(
self,
prob: float = 0.1,
@@ -1440,6 +1451,7 @@ def __init__(
mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,
padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.REFLECTION,
cache_grid: bool = False,
as_tensor_output: bool = True,
device: Optional[torch.device] = None,
) -> None:
"""
@@ -1555,11 +1567,11 @@ def randomize(self, data: Optional[Any] = None) -> None:

def __call__(
self,
img: Union[np.ndarray, torch.Tensor],
img: NdarrayOrTensor,
spatial_size: Optional[Union[Sequence[int], int]] = None,
mode: Optional[Union[GridSampleMode, str]] = None,
padding_mode: Optional[Union[GridSamplePadMode, str]] = None,
) -> Union[np.ndarray, torch.Tensor]:
) -> NdarrayOrTensor:
"""
Args:
img: shape must be (num_channels, H, W[, D]),
5 changes: 5 additions & 0 deletions monai/transforms/spatial/dictionary.py
Original file line number Diff line number Diff line change
@@ -55,6 +55,7 @@
ensure_tuple_rep,
fall_back_tuple,
)
from monai.utils.deprecated import deprecated_arg
from monai.utils.enums import InverseKeys
from monai.utils.module import optional_import
from monai.utils.type_conversion import convert_data_type
@@ -576,6 +577,7 @@ class Affined(MapTransform, InvertibleTransform):

backend = Affine.backend

@deprecated_arg(name="as_tensor_output", since="0.6")
def __init__(
self,
keys: KeysCollection,
@@ -586,6 +588,7 @@ def __init__(
spatial_size: Optional[Union[Sequence[int], int]] = None,
mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,
as_tensor_output: bool = True,
device: Optional[torch.device] = None,
allow_missing_keys: bool = False,
) -> None:
@@ -689,6 +692,7 @@ class RandAffined(RandomizableTransform, MapTransform, InvertibleTransform):

backend = Affine.backend

@deprecated_arg(name="as_tensor_output", since="0.6")
def __init__(
self,
keys: KeysCollection,
@@ -701,6 +705,7 @@ def __init__(
mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,
cache_grid: bool = False,
as_tensor_output: bool = True,
device: Optional[torch.device] = None,
allow_missing_keys: bool = False,
) -> None: