Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add deepgrow dataset #1581

Merged
merged 4 commits into from
Feb 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
281 changes: 281 additions & 0 deletions monai/apps/deepgrow/dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,281 @@
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
from typing import Dict, List

import numpy as np

from monai.transforms import AsChannelFirstd, Compose, LoadImaged, Orientationd, Spacingd
from monai.utils import GridSampleMode


def create_dataset(
datalist,
output_dir: str,
dimension,
pixdim,
image_key: str = "image",
label_key: str = "label",
base_dir=None,
limit: int = 0,
relative_path: bool = False,
transforms=None,
) -> List[Dict]:
"""
Utility to pre-process and create dataset list for Deepgrow training over on existing one.
The input data list is normally a list of images and labels (3D volume) that needs pre-processing
for Deepgrow training pipeline.
Args:
datalist: A list of data dictionary. Each entry should at least contain 'image_key': <image filename>.
For example, typical input data can be a list of dictionaries::
[{'image': <image filename>, 'label': <label filename>}]
output_dir: target directory to store the training data for Deepgrow Training
pixdim: output voxel spacing.
dimension: dimension for Deepgrow training. It can be 2 or 3.
image_key: image key in input datalist. Defaults to 'image'.
label_key: label key in input datalist. Defaults to 'label'.
base_dir: base directory in case related path is used for the keys in datalist. Defaults to None.
limit: limit number of inputs for pre-processing. Defaults to 0 (no limit).
relative_path: output keys values should be based on relative path. Defaults to False.
transforms: explicit transforms to execute operations on input data.
Raises:
ValueError: When ``dimension`` is not one of [2, 3]
ValueError: When ``datalist`` is Empty
Returns:
A new datalist that contains path to the images/labels after pre-processing.
Example::
datalist = create_dataset(
datalist=[{'image': 'img1.nii', 'label': 'label1.nii'}],
base_dir=None,
output_dir=output_2d,
dimension=2,
image_key='image',
label_key='label',
pixdim=(1.0, 1.0),
limit=0,
relative_path=True
)
print(datalist[0]["image"], datalist[0]["label"])
"""

if dimension not in [2, 3]:
raise ValueError("Dimension can be only 2 or 3 as Deepgrow supports only 2D/3D Training")

if not len(datalist):
raise ValueError("Input datalist is empty")

transforms = _default_transforms(image_key, label_key, pixdim) if transforms is None else transforms
new_datalist = []
for idx in range(len(datalist)):
if limit and idx >= limit:
break

image = datalist[idx][image_key]
label = datalist[idx].get(label_key, None)
if base_dir:
image = os.path.join(base_dir, image)
label = os.path.join(base_dir, label) if label else None

image = os.path.abspath(image)
label = os.path.abspath(label) if label else None

logging.info("Image: {}; Label: {}".format(image, label if label else None))
data = transforms({image_key: image, label_key: label})
if dimension == 2:
data = _save_data_2d(
vol_idx=idx,
vol_image=data[image_key],
vol_label=data[label_key],
dataset_dir=output_dir,
relative_path=relative_path,
)
else:
data = _save_data_3d(
vol_idx=idx,
vol_image=data[image_key],
vol_label=data[label_key],
dataset_dir=output_dir,
relative_path=relative_path,
)
new_datalist.extend(data)
return new_datalist


def _default_transforms(image_key, label_key, pixdim):
keys = [image_key] if label_key is None else [image_key, label_key]
mode = [GridSampleMode.BILINEAR, GridSampleMode.NEAREST] if len(keys) == 2 else [GridSampleMode.BILINEAR]
return Compose(
[
LoadImaged(keys=keys),
AsChannelFirstd(keys=keys),
Spacingd(keys=keys, pixdim=pixdim, mode=mode),
Orientationd(keys=keys, axcodes="RAS"),
]
)


def _save_data_2d(vol_idx, vol_image, vol_label, dataset_dir, relative_path):
data_list = []

if len(vol_image.shape) == 4:
logging.info(
"4D-Image, pick only first series; Image: {}; Label: {}".format(
vol_image.shape, vol_label.shape if vol_label else None
)
)
vol_image = vol_image[0]
vol_image = np.moveaxis(vol_image, -1, 0)

image_count = 0
label_count = 0
unique_labels_count = 0
for sid in range(vol_image.shape[0]):
image = vol_image[sid, ...]
label = vol_label[sid, ...] if vol_label is not None else None

if vol_label is not None and np.sum(label) == 0:
continue

image_file_prefix = "vol_idx_{:0>4d}_slice_{:0>3d}".format(vol_idx, sid)
image_file = os.path.join(dataset_dir, "images", image_file_prefix)
image_file += ".npy"

os.makedirs(os.path.join(dataset_dir, "images"), exist_ok=True)
np.save(image_file, image)
image_count += 1

# Test Data
if vol_label is None:
data_list.append(
{
"image": image_file.replace(dataset_dir + os.pathsep, "") if relative_path else image_file,
}
)
continue

# For all Labels
unique_labels = np.unique(label.flatten())
unique_labels = unique_labels[unique_labels != 0]
unique_labels_count = max(unique_labels_count, len(unique_labels))

for idx in unique_labels:
label_file_prefix = "{}_region_{:0>2d}".format(image_file_prefix, int(idx))
label_file = os.path.join(dataset_dir, "labels", label_file_prefix)
label_file += ".npy"

os.makedirs(os.path.join(dataset_dir, "labels"), exist_ok=True)
curr_label = (label == idx).astype(np.float32)
np.save(label_file, curr_label)

label_count += 1
data_list.append(
{
"image": image_file.replace(dataset_dir + os.pathsep, "") if relative_path else image_file,
"label": label_file.replace(dataset_dir + os.pathsep, "") if relative_path else label_file,
"region": int(idx),
}
)

if unique_labels_count >= 20:
logging.warning(f"Unique labels {unique_labels_count} exceeds 20. Please check if this is correct.")

logging.info(
"{} => Image Shape: {} => {}; Label Shape: {} => {}; Unique Labels: {}".format(
vol_idx,
vol_image.shape,
image_count,
vol_label.shape if vol_label is not None else None,
label_count,
unique_labels_count,
)
)
return data_list


def _save_data_3d(vol_idx, vol_image, vol_label, dataset_dir, relative_path):
data_list = []

if len(vol_image.shape) == 4:
logging.info(
"4D-Image, pick only first series; Image: {}; Label: {}".format(
vol_image.shape, vol_label.shape if vol_label else None
)
)
vol_image = vol_image[0]
vol_image = np.moveaxis(vol_image, -1, 0)

image_count = 0
label_count = 0
unique_labels_count = 0

image_file_prefix = "vol_idx_{:0>4d}".format(vol_idx)
image_file = os.path.join(dataset_dir, "images", image_file_prefix)
image_file += ".npy"

os.makedirs(os.path.join(dataset_dir, "images"), exist_ok=True)
np.save(image_file, vol_image)
image_count += 1

# Test Data
if vol_label is None:
data_list.append(
{
"image": image_file.replace(dataset_dir + os.pathsep, "") if relative_path else image_file,
}
)
else:
# For all Labels
unique_labels = np.unique(vol_label.flatten())
unique_labels = unique_labels[unique_labels != 0]
unique_labels_count = max(unique_labels_count, len(unique_labels))

for idx in unique_labels:
label_file_prefix = "{}_region_{:0>2d}".format(image_file_prefix, int(idx))
label_file = os.path.join(dataset_dir, "labels", label_file_prefix)
label_file += ".npy"

curr_label = (vol_label == idx).astype(np.float32)
os.makedirs(os.path.join(dataset_dir, "labels"), exist_ok=True)
np.save(label_file, curr_label)

label_count += 1
data_list.append(
{
"image": image_file.replace(dataset_dir + os.pathsep, "") if relative_path else image_file,
"label": label_file.replace(dataset_dir + os.pathsep, "") if relative_path else label_file,
"region": int(idx),
}
)

if unique_labels_count >= 20:
logging.warning(f"Unique labels {unique_labels_count} exceeds 20. Please check if this is correct.")

logging.info(
"{} => Image Shape: {} => {}; Label Shape: {} => {}; Unique Labels: {}".format(
vol_idx,
vol_image.shape,
image_count,
vol_label.shape if vol_label is not None else None,
label_count,
unique_labels_count,
)
)
return data_list
1 change: 1 addition & 0 deletions tests/min_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@ def run_testsuit():
"test_handler_metrics_saver_dist",
"test_evenly_divisible_all_gather_dist",
"test_handler_classification_saver_dist",
"test_deepgrow_dataset",
]
assert sorted(exclude_cases) == sorted(set(exclude_cases)), f"Duplicated items in {exclude_cases}"

Expand Down
57 changes: 57 additions & 0 deletions tests/test_deepgrow_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile
import unittest

import nibabel as nib
import numpy as np

from monai.apps.deepgrow.dataset import create_dataset


class TestCreateDataset(unittest.TestCase):
def _create_data(self, tempdir):
affine = np.eye(4)
image = np.random.randint(0, 2, size=(128, 128, 40))
image_file = os.path.join(tempdir, "image1.nii.gz")
nib.save(nib.Nifti1Image(image, affine), image_file)

label = np.zeros((128, 128, 40))
label[0][1][0] = 1
label[0][1][1] = 1
label[0][0][2] = 1
label[0][1][2] = 1
label_file = os.path.join(tempdir, "label1.nii.gz")
nib.save(nib.Nifti1Image(label, affine), label_file)

return [{"image": image_file, "label": label_file}]

def test_create_dataset_2d(self):
with tempfile.TemporaryDirectory() as tempdir:
datalist = self._create_data(tempdir)
output_dir = os.path.join(tempdir, "2d")
deepgrow_datalist = create_dataset(datalist=datalist, output_dir=output_dir, dimension=2, pixdim=(1, 1))
self.assertEqual(len(deepgrow_datalist), 3)
self.assertEqual(deepgrow_datalist[0]["region"], 1)

def test_create_dataset_3d(self):
with tempfile.TemporaryDirectory() as tempdir:
datalist = self._create_data(tempdir)
output_dir = os.path.join(tempdir, "3d")
deepgrow_datalist = create_dataset(datalist=datalist, output_dir=output_dir, dimension=3, pixdim=(1, 1, 1))
self.assertEqual(len(deepgrow_datalist), 1)
self.assertEqual(deepgrow_datalist[0]["region"], 1)


if __name__ == "__main__":
unittest.main()