-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add row conv operator #6013
Add row conv operator #6013
Changes from 35 commits
7183317
9ecf3e6
838b161
65173bc
5b43ad0
272a912
543e2f3
1b581f2
ebc4f47
640b873
261c972
c425096
6ef6c0b
dcb84af
9fed9d7
0ac4c6f
1d02152
705cff7
5b43f46
99ae545
9cc579d
d5a0040
84ed570
c9a1f96
0313069
56cf035
84926a0
a6d77cf
c5a793e
d6410e2
251ac0f
1974019
29ab076
025c32d
2fbc0cb
456cf13
2ae816a
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/row_conv_op.h" | ||
#include "paddle/framework/eigen.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using LoDTensor = framework::LoDTensor; | ||
using framework::Tensor; | ||
|
||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; | ||
|
||
class RowConvOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext *ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), | ||
"Input(X) of RowConvOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Filter"), | ||
"Input(Filter) of RowConvOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out"), | ||
"Output(Out) of RowConvOp should not be null."); | ||
|
||
auto x_dims = ctx->GetInputDim("X"); | ||
auto filter_dims = ctx->GetInputDim("Filter"); | ||
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); | ||
PADDLE_ENFORCE_EQ(filter_dims.size(), 2, "Input(Y)'s rank should be 2."); | ||
PADDLE_ENFORCE_EQ( | ||
x_dims[1], filter_dims[1], | ||
"The 2nd dimension of Input(X) and Input(Filter) should be same."); | ||
ctx->SetOutputDim("Out", x_dims); | ||
ctx->ShareLoD("X", "Out"); | ||
} | ||
}; | ||
|
||
class RowConvGradOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext *ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Filter"), | ||
"Input(Filter) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), | ||
"Gradient of output(Out) should not be null."); | ||
|
||
auto x_grad_name = framework::GradVarName("X"); | ||
if (ctx->HasOutput(x_grad_name)) { | ||
auto x_dims = ctx->GetInputDim("X"); | ||
ctx->SetOutputDim(x_grad_name, x_dims); | ||
} | ||
|
||
auto filter_grad_name = framework::GradVarName("Filter"); | ||
if (ctx->HasOutput(filter_grad_name)) { | ||
auto filter_dims = ctx->GetInputDim("Filter"); | ||
ctx->SetOutputDim(filter_grad_name, filter_dims); | ||
} | ||
} | ||
}; | ||
|
||
class RowConvOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
RowConvOpMaker(framework::OpProto *proto, | ||
framework::OpAttrChecker *op_checker) | ||
: framework::OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", | ||
"(LoDTensor), the input(X) is a LodTensor, which supports " | ||
"variable time-length input sequences. The underlying tensor " | ||
"in this LoDTensor is a matrix with shape (T x N), where T " | ||
"is the total time steps in this mini-batch and N is the input " | ||
"data dimension."); | ||
AddInput("Filter", | ||
"(Tensor), the input(Filter) is a learnable parameter. It " | ||
"is a 2-D tensor with shape (future_context x N), where, " | ||
"future_context is the batch size and N is the data dimension."); | ||
AddOutput("Out", | ||
"(LoDTensor), the output(Out) is a LodTensor, which supports " | ||
"variable time-length input sequences. The underlying tensor " | ||
"in this LodTensor is a matrix with shape T x N, i.e., the " | ||
"same shape as X."); | ||
AddComment(R"DOC( | ||
Row-convolution Operator. | ||
|
||
This operator was introduced in the paper: | ||
http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf | ||
Given an input sequence $in$ of length $t$ and input dimension $d$, | ||
and a filter ($W$) of size $context \times d$, | ||
the output sequence is convolved in the following manner: | ||
|
||
$$ | ||
out_{i, :} = \sum_{j=i}^{i + context} in_{j,:} \dot W_{i-j, :} | ||
$$ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. For the doc, there are some comments in There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Thanks for the pointer, i have included now. |
||
|
||
)DOC"); | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class RowConvKernel<platform::CPUPlace, T> : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext &context) const override { | ||
auto *X = context.Input<LoDTensor>("X"); | ||
auto *Filter = context.Input<Tensor>("Filter"); | ||
auto *Out = context.Output<LoDTensor>("Out"); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The naming style: https://google.github.io/styleguide/cppguide.html#Variable_Names There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Fixed. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. (I need to fix for .cu code) |
||
|
||
Out->mutable_data<T>(context.GetPlace()); | ||
context.ShareLoD("X", "Out"); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Since there is There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Fixed. |
||
|
||
auto batch_indices = X->lod()[0]; | ||
auto input_dim = X->dims()[1]; // 'in' is of size T x N | ||
size_t num_sequence = batch_indices.size() - 1; | ||
|
||
auto context_length = Filter->dims()[0]; | ||
auto weights = EigenMatrix<T>::From(*Filter); | ||
|
||
for (size_t i = 0; i < num_sequence; i++) { | ||
int start = static_cast<int>(batch_indices[i]); | ||
int end = static_cast<int>(batch_indices[i + 1]); | ||
int current_timesteps = end - start; | ||
Tensor cur_input_sequence = | ||
X->Slice(start, end); // Current input sequence | ||
Tensor cur_output_sequence = | ||
Out->Slice(start, end); // Current output sequence | ||
auto cip_seq = EigenMatrix<T>::From(cur_input_sequence); | ||
auto cot_seq = EigenMatrix<T>::From(cur_output_sequence); | ||
|
||
for (int k = 0; k < current_timesteps; | ||
k++) { // For different time steps in the same sequence | ||
for (int w = 0; (w < context_length) && ((k + w) < current_timesteps); | ||
w++) { | ||
for (int d = 0; d < input_dim; d++) { | ||
if (w == 0) { | ||
cot_seq(k, d) = weights(w, d) * cip_seq(k + w, d); | ||
} else { | ||
cot_seq(k, d) += weights(w, d) * cip_seq(k + w, d); | ||
} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Maybe we can use elementwise mul and col-wise sum to remove the There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Sure. |
||
} | ||
} | ||
} | ||
} | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class RowConvGradKernel<platform::CPUPlace, T> : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext &context) const override { | ||
auto *X = context.Input<LoDTensor>("X"); | ||
auto *Filter = context.Input<Tensor>("Filter"); | ||
auto *dOut = context.Input<LoDTensor>(framework::GradVarName("Out")); | ||
auto *dX = context.Output<LoDTensor>(framework::GradVarName("X")); | ||
auto *dFilter = context.Output<Tensor>(framework::GradVarName("Filter")); | ||
|
||
auto input_dim = X->dims()[1]; // 'in' is of size T x N | ||
auto batch_indices = X->lod()[0]; | ||
size_t num_sequence = batch_indices.size() - 1; | ||
auto context_length = Filter->dims()[0]; | ||
|
||
if (dFilter) { | ||
dFilter->mutable_data<T>(context.GetPlace()); | ||
auto dweights = | ||
EigenMatrix<T>::From(*dFilter); // Gradient of weight matrix | ||
dweights.setZero(); | ||
|
||
for (size_t i = 0; i < num_sequence; i++) { // For different sequences | ||
int start = static_cast<int>(batch_indices[i]); | ||
int end = static_cast<int>(batch_indices[i + 1]); | ||
|
||
Tensor cur_input = X->Slice(start, end); // Current input sequence | ||
Tensor cur_doutput = | ||
dOut->Slice(start, end); // Current output grad sequence | ||
|
||
auto cur_ip = EigenMatrix<T>::From(cur_input); | ||
auto cur_dout = EigenMatrix<T>::From(cur_doutput); | ||
int current_timesteps = end - start; | ||
|
||
for (int k = 0; k < current_timesteps; | ||
k++) { // For different time steps in the same sequence | ||
for (int w = 0; (w < context_length) && ((k + w) < current_timesteps); | ||
w++) { | ||
// For dweights (Updating the gradient of weight matrix) | ||
for (int d = 0; d < input_dim; d++) { | ||
dweights(w, d) += cur_ip(k + w, d) * cur_dout(k, d); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
if (dX) { | ||
dX->mutable_data<T>(context.GetPlace()); | ||
auto weights = EigenMatrix<T>::From(*Filter); | ||
for (size_t i = 0; i < num_sequence; i++) { // For different sequences | ||
int start = static_cast<int>(batch_indices[i]); | ||
int end = static_cast<int>(batch_indices[i + 1]); | ||
|
||
Tensor cur_doutput = | ||
dOut->Slice(start, end); // Current output grad sequence | ||
Tensor cur_dinput = | ||
dX->Slice(start, end); // Current input grad sequence | ||
|
||
auto cur_dout = EigenMatrix<T>::From(cur_doutput); | ||
auto cur_dip = EigenMatrix<T>::From(cur_dinput); | ||
cur_dip.setZero(); | ||
int current_timesteps = end - start; | ||
|
||
for (int k = 0; k < current_timesteps; | ||
k++) { // For different time steps in the same sequence | ||
for (int w = 0; (w < context_length) && ((k + w) < current_timesteps); | ||
w++) { | ||
// For dinput (Updating the gradient wrt input) | ||
for (int d = 0; d < input_dim; d++) { | ||
cur_dip(k + w, d) += weights(w, d) * cur_dout(k, d); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(row_conv, ops::RowConvOp, ops::RowConvOpMaker, row_conv_grad, | ||
ops::RowConvGradOp); | ||
REGISTER_OP_CPU_KERNEL(row_conv, | ||
ops::RowConvKernel<paddle::platform::CPUPlace, float>); | ||
REGISTER_OP_CPU_KERNEL( | ||
row_conv_grad, ops::RowConvGradKernel<paddle::platform::CPUPlace, float>); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I like your code, I think the name
future_context
is good :)future_context is the future context length.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Fixed, thanks.