-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add row conv operator #6013
Merged
Merged
Add row conv operator #6013
Changes from all commits
Commits
Show all changes
37 commits
Select commit
Hold shift + click to select a range
7183317
Add initial CPU version
sidgoyal78 9ecf3e6
Modify CPU version
sidgoyal78 838b161
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
sidgoyal78 65173bc
Add naive GPU version
sidgoyal78 5b43ad0
Remove type error for inp arguments
sidgoyal78 272a912
Remove update bug
sidgoyal78 543e2f3
Try size_t* for batch_indices
sidgoyal78 1b581f2
Fix variable name
sidgoyal78 ebc4f47
Fix minor <= bug
sidgoyal78 640b873
Add simplest dFilter implementation
sidgoyal78 261c972
Add simplest dX grad implementation
sidgoyal78 c425096
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
sidgoyal78 6ef6c0b
Check += error
sidgoyal78 dcb84af
Remove arg list error
sidgoyal78 9fed9d7
Add tid checks
sidgoyal78 0ac4c6f
Add single thread implementation
sidgoyal78 1d02152
Fix input
sidgoyal78 705cff7
Add better kernels for forward and dX computation
sidgoyal78 5b43f46
Modify blockDim and gridDim for dX kernel
sidgoyal78 99ae545
Add forward prop with shared memory
sidgoyal78 9cc579d
Fix variable name
sidgoyal78 d5a0040
Add pointer to sharedmem
sidgoyal78 84ed570
Add dX with shared memory
sidgoyal78 c9a1f96
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
sidgoyal78 0313069
Modify backprop for cpu version of dX
sidgoyal78 56cf035
Add better dW kernel
sidgoyal78 84926a0
Fix minor typo
sidgoyal78 a6d77cf
Fix index in dW
sidgoyal78 c5a793e
Try alt dX for cpu version
sidgoyal78 d6410e2
Add improved dW version
sidgoyal78 251ac0f
Fix errors
sidgoyal78 1974019
Fix variable dim for shared mem
sidgoyal78 29ab076
Fix dim indexing in dW improved gpu
sidgoyal78 025c32d
Fix documentation
sidgoyal78 2fbc0cb
Fix documentation
sidgoyal78 456cf13
Address review comments
sidgoyal78 2ae816a
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
sidgoyal78 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/row_conv_op.h" | ||
#include "paddle/framework/eigen.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using LoDTensor = framework::LoDTensor; | ||
using framework::Tensor; | ||
|
||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; | ||
|
||
class RowConvOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext *ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), | ||
"Input(X) of RowConvOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Filter"), | ||
"Input(Filter) of RowConvOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out"), | ||
"Output(Out) of RowConvOp should not be null."); | ||
|
||
auto x_dims = ctx->GetInputDim("X"); | ||
auto filter_dims = ctx->GetInputDim("Filter"); | ||
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); | ||
PADDLE_ENFORCE_EQ(filter_dims.size(), 2, "Input(Y)'s rank should be 2."); | ||
PADDLE_ENFORCE_EQ( | ||
x_dims[1], filter_dims[1], | ||
"The 2nd dimension of Input(X) and Input(Filter) should be same."); | ||
ctx->SetOutputDim("Out", x_dims); | ||
ctx->ShareLoD("X", "Out"); | ||
} | ||
}; | ||
|
||
class RowConvGradOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext *ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Filter"), | ||
"Input(Filter) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), | ||
"Gradient of output(Out) should not be null."); | ||
|
||
auto x_grad_name = framework::GradVarName("X"); | ||
if (ctx->HasOutput(x_grad_name)) { | ||
auto x_dims = ctx->GetInputDim("X"); | ||
ctx->SetOutputDim(x_grad_name, x_dims); | ||
} | ||
|
||
auto filter_grad_name = framework::GradVarName("Filter"); | ||
if (ctx->HasOutput(filter_grad_name)) { | ||
auto filter_dims = ctx->GetInputDim("Filter"); | ||
ctx->SetOutputDim(filter_grad_name, filter_dims); | ||
} | ||
} | ||
}; | ||
|
||
class RowConvOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
RowConvOpMaker(framework::OpProto *proto, | ||
framework::OpAttrChecker *op_checker) | ||
: framework::OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", | ||
"(LoDTensor), the input(X) is a LodTensor, which supports " | ||
"variable time-length input sequences. The underlying tensor " | ||
"in this LoDTensor is a matrix with shape (T x N), where T " | ||
"is the total time steps in this mini-batch and N is the input " | ||
"data dimension."); | ||
AddInput("Filter", | ||
"(Tensor), the input(Filter) is a learnable parameter. It " | ||
"is a 2-D tensor with shape (future_context x N), where, " | ||
"future_context is the future context length and N is the data " | ||
"dimension."); | ||
AddOutput("Out", | ||
"(LoDTensor), the output(Out) is a LodTensor, which supports " | ||
"variable time-length input sequences. The underlying tensor " | ||
"in this LodTensor is a matrix with shape T x N, i.e., the " | ||
"same shape as X."); | ||
AddComment(R"DOC( | ||
Row-convolution Operator. | ||
|
||
The row convolution is called lookahead convolution. This operator was | ||
introduced in the following paper for DeepSpeech2: | ||
http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf | ||
|
||
The main motivation is that a bidirectional RNN, useful in DeepSpeech | ||
like speech models, learns representation for a sequence by performing a | ||
forward and a backward pass through the entire sequence. However, unlike | ||
unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online | ||
and low-latency setting. The lookahead convolution incorporates information | ||
from future subsequences in a computationally efficient manner to improve | ||
unidirectional recurrent neural networks. The row convolution operator is | ||
different from the 1D sequence convolution, and is computed as follows: | ||
|
||
Given an input sequence $in$ of length $t$ and input dimension $d$, | ||
and a filter ($W$) of size $context \times d$, | ||
the output sequence is convolved as: | ||
|
||
$$ | ||
out_{i, :} = \sum_{j=i}^{i + context} in_{j,:} \dot W_{i-j, :} | ||
$$ | ||
|
||
)DOC"); | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class RowConvKernel<platform::CPUPlace, T> : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext &context) const override { | ||
auto *x = context.Input<LoDTensor>("X"); | ||
auto *filter = context.Input<Tensor>("Filter"); | ||
auto *out = context.Output<LoDTensor>("Out"); | ||
|
||
out->mutable_data<T>(context.GetPlace()); | ||
|
||
auto batch_indices = x->lod()[0]; | ||
auto input_dim = x->dims()[1]; // 'in' is of size T x N | ||
size_t num_sequence = batch_indices.size() - 1; | ||
|
||
auto future_context = filter->dims()[0]; | ||
auto weights = EigenMatrix<T>::From(*filter); | ||
|
||
for (size_t i = 0; i < num_sequence; i++) { | ||
int start = static_cast<int>(batch_indices[i]); | ||
int end = static_cast<int>(batch_indices[i + 1]); | ||
int current_timesteps = end - start; | ||
Tensor cur_input_sequence = | ||
x->Slice(start, end); // Current input sequence | ||
Tensor cur_output_sequence = | ||
out->Slice(start, end); // Current output sequence | ||
auto cip_seq = EigenMatrix<T>::From(cur_input_sequence); | ||
auto cot_seq = EigenMatrix<T>::From(cur_output_sequence); | ||
|
||
for (int k = 0; k < current_timesteps; | ||
k++) { // For different time steps in the same sequence | ||
for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); | ||
w++) { | ||
for (int d = 0; d < input_dim; d++) { | ||
if (w == 0) { | ||
cot_seq(k, d) = weights(w, d) * cip_seq(k + w, d); | ||
} else { | ||
cot_seq(k, d) += weights(w, d) * cip_seq(k + w, d); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class RowConvGradKernel<platform::CPUPlace, T> : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext &context) const override { | ||
auto *x = context.Input<LoDTensor>("X"); | ||
auto *filter = context.Input<Tensor>("Filter"); | ||
auto *d_out = context.Input<LoDTensor>(framework::GradVarName("Out")); | ||
auto *dx = context.Output<LoDTensor>(framework::GradVarName("X")); | ||
auto *d_filter = context.Output<Tensor>(framework::GradVarName("Filter")); | ||
|
||
auto input_dim = x->dims()[1]; // 'x' is of size T x N | ||
auto batch_indices = x->lod()[0]; | ||
size_t num_sequence = batch_indices.size() - 1; | ||
auto future_context = filter->dims()[0]; | ||
|
||
if (d_filter) { | ||
d_filter->mutable_data<T>(context.GetPlace()); | ||
auto dweights = | ||
EigenMatrix<T>::From(*d_filter); // Gradient of weight matrix | ||
dweights.setZero(); | ||
|
||
for (size_t i = 0; i < num_sequence; i++) { // For different sequences | ||
int start = static_cast<int>(batch_indices[i]); | ||
int end = static_cast<int>(batch_indices[i + 1]); | ||
|
||
Tensor cur_input = x->Slice(start, end); // Current input sequence | ||
Tensor cur_doutput = | ||
d_out->Slice(start, end); // Current output grad sequence | ||
|
||
auto cur_ip = EigenMatrix<T>::From(cur_input); | ||
auto cur_dout = EigenMatrix<T>::From(cur_doutput); | ||
int current_timesteps = end - start; | ||
|
||
for (int k = 0; k < current_timesteps; | ||
k++) { // For different time steps in the same sequence | ||
for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); | ||
w++) { | ||
// For dweights (Updating the gradient of weight matrix) | ||
for (int d = 0; d < input_dim; d++) { | ||
dweights(w, d) += cur_ip(k + w, d) * cur_dout(k, d); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
if (dx) { | ||
dx->mutable_data<T>(context.GetPlace()); | ||
auto weights = EigenMatrix<T>::From(*filter); | ||
for (size_t i = 0; i < num_sequence; i++) { // For different sequences | ||
int start = static_cast<int>(batch_indices[i]); | ||
int end = static_cast<int>(batch_indices[i + 1]); | ||
|
||
Tensor cur_doutput = | ||
d_out->Slice(start, end); // Current output grad sequence | ||
Tensor cur_dinput = | ||
dx->Slice(start, end); // Current input grad sequence | ||
|
||
auto cur_dout = EigenMatrix<T>::From(cur_doutput); | ||
auto cur_dip = EigenMatrix<T>::From(cur_dinput); | ||
cur_dip.setZero(); | ||
int current_timesteps = end - start; | ||
|
||
for (int k = 0; k < current_timesteps; | ||
k++) { // For different time steps in the same sequence | ||
for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); | ||
w++) { | ||
// For dinput (Updating the gradient wrt input) | ||
for (int d = 0; d < input_dim; d++) { | ||
cur_dip(k + w, d) += weights(w, d) * cur_dout(k, d); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(row_conv, ops::RowConvOp, ops::RowConvOpMaker, row_conv_grad, | ||
ops::RowConvGradOp); | ||
REGISTER_OP_CPU_KERNEL(row_conv, | ||
ops::RowConvKernel<paddle::platform::CPUPlace, float>); | ||
REGISTER_OP_CPU_KERNEL( | ||
row_conv_grad, ops::RowConvGradKernel<paddle::platform::CPUPlace, float>); |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Maybe we can use elementwise mul and col-wise sum to remove the
for loop
in line 145 and line 147. But the optimization can be done in the future. So in this PR, I think it is ok here.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sure.