Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add adadelta op for xpu, test=kunlun #47661

Merged
merged 1 commit into from
Nov 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions paddle/fluid/platform/device/xpu/xpu2_op_list.h
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ XPUOpMap& get_kl2_ops() {
{"abs_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace()),
pOpKernelType(vartype::FP16, XPUPlace())})},
{"adadelta", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"adamw", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"adam",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace()),
Expand Down Expand Up @@ -105,6 +106,8 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace()),
pOpKernelType(vartype::FP16, XPUPlace())})},
{"clip", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"clip_by_norm",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个的单测呢?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

单测之前就有了,不过没有按照目前的格式进行修改。那我修改下重新提交吧。

XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"coalesce_tensor",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"concat_grad",
Expand Down
53 changes: 53 additions & 0 deletions paddle/phi/kernels/xpu/adadelta_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/adadelta_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void AdadeltaKernel(const Context& dev_ctx,
const DenseTensor& param,
const DenseTensor& grad,
const DenseTensor& avg_squared_grad,
const DenseTensor& avg_squared_update,
float rho,
float epsilon,
DenseTensor* param_out,
DenseTensor* avg_squared_grad_out,
DenseTensor* avg_squared_update_out) {
dev_ctx.template Alloc<T>(param_out);
dev_ctx.template Alloc<T>(avg_squared_grad_out);
dev_ctx.template Alloc<T>(avg_squared_update_out);

int r = xpu::adadelta<T, T>(dev_ctx.x_context(),
param.data<T>(),
grad.data<T>(),
avg_squared_grad.data<T>(),
avg_squared_update.data<T>(),
param_out->data<T>(),
avg_squared_grad_out->data<T>(),
avg_squared_update_out->data<T>(),
param.numel(),
rho,
epsilon);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "adadelta");
}

} // namespace phi

PD_REGISTER_KERNEL(adadelta, XPU, ALL_LAYOUT, phi::AdadeltaKernel, float) {}
239 changes: 239 additions & 0 deletions python/paddle/fluid/tests/unittests/xpu/test_adadelta_op_xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,239 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import sys

sys.path.append("..")

from op_test import OpTest
import paddle
import paddle.fluid as fluid
from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import (
create_test_class,
get_xpu_op_support_types,
XPUOpTestWrapper,
)

paddle.enable_static()


class XPUTestAdadelta(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'adadelta'

class TestAdadeltaOp1(XPUOpTest):
def setUp(self):
self.op_type = "adadelta"
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)

param = np.random.uniform(-1, 1, (102, 105)).astype(self.dtype)
grad = np.random.uniform(-1, 1, (102, 105)).astype(self.dtype)
# The squared gradient is positive
avg_squared_grad = np.random.random((102, 105)).astype(self.dtype)
# The squared update is positive
avg_squared_update = np.random.random((102, 105)).astype(self.dtype)

rho = 0.95
epsilon = 1e-6

self.inputs = {
'Param': param,
'Grad': grad,
'AvgSquaredGrad': avg_squared_grad,
'AvgSquaredUpdate': avg_squared_update,
}

self.attrs = {'rho': rho, 'epsilon': epsilon}

avg_squared_grad_out = rho * avg_squared_grad + (
1 - rho
) * np.square(grad)
update = -np.multiply(
np.sqrt(
np.divide(
avg_squared_update + epsilon,
avg_squared_grad_out + epsilon,
)
),
grad,
)

avg_squared_update_out = rho * avg_squared_update + (
1 - rho
) * np.square(update)

param_out = param + update

self.outputs = {
'ParamOut': param_out,
'AvgSquaredGradOut': avg_squared_grad_out,
'AvgSquaredUpdateOut': avg_squared_update_out,
}

def test_check_output(self):
self.check_output()

class TestAdadeltaOp2(OpTest):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里是XPUOpTest吧?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

攒着下次一起改,节省机器资源

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

目前单测可以跑过,下次pr的时候再修改一下。

'''Test Adadelta op with default attribute values'''

def setUp(self):
self.op_type = "adadelta"
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)

param = np.random.uniform(-1, 1, (102, 105)).astype(self.dtype)
grad = np.random.uniform(-1, 1, (102, 105)).astype(self.dtype)
# The squared gradient is positive
avg_squared_grad = np.random.random((102, 105)).astype(self.dtype)
# The squared update is positive
avg_squared_update = np.random.random((102, 105)).astype(self.dtype)

rho = 0.95
epsilon = 1e-6

self.inputs = {
'Param': param,
'Grad': grad,
'AvgSquaredGrad': avg_squared_grad,
'AvgSquaredUpdate': avg_squared_update,
}

avg_squared_grad_out = rho * avg_squared_grad + (
1 - rho
) * np.square(grad)
update = -np.multiply(
np.sqrt(
np.divide(
avg_squared_update + epsilon,
avg_squared_grad_out + epsilon,
)
),
grad,
)

avg_squared_update_out = rho * avg_squared_update + (
1 - rho
) * np.square(update)

param_out = param + update

self.outputs = {
'ParamOut': param_out,
'AvgSquaredGradOut': avg_squared_grad_out,
'AvgSquaredUpdateOut': avg_squared_update_out,
}

def test_check_output(self):
self.check_output()

class TestAdadeltaV2(unittest.TestCase):
def test_adadelta_dygraph(self):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)

paddle.disable_static(self.place)
value = np.arange(26).reshape(2, 13).astype(self.dtype)
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5)
# This can be any optimizer supported by dygraph.
adam = paddle.optimizer.Adadelta(
learning_rate=0.01,
parameters=linear.parameters(),
weight_decay=0.01,
)
out = linear(a)
out.backward()
adam.step()
adam.clear_gradients()

def test_adadelta(self):
self.dtype = self.in_type
paddle.enable_static()
place = fluid.XPUPlace(0)
main = fluid.Program()
with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype=self.dtype)
y = fluid.layers.data(name='y', shape=[1], dtype=self.dtype)
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost)

rms_optimizer = paddle.optimizer.Adadelta(learning_rate=0.1)
rms_optimizer.minimize(avg_cost)

fetch_list = [avg_cost]
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1
)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

def test_raise_error(self):
self.assertRaises(ValueError, paddle.optimizer.Adadelta, None)
self.assertRaises(
ValueError,
paddle.optimizer.Adadelta,
learning_rate=0.1,
rho=None,
)
self.assertRaises(
ValueError,
paddle.optimizer.Adadelta,
learning_rate=0.1,
epsilon=None,
)

class TestAdadeltaV2Group(TestAdadeltaV2):
def test_adadelta_dygraph(self):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)

paddle.disable_static(self.place)
value = np.arange(26).reshape(2, 13).astype(self.dtype)
a = paddle.to_tensor(value)
linear_1 = paddle.nn.Linear(13, 5)
linear_2 = paddle.nn.Linear(5, 5)
# This can be any optimizer supported by dygraph.
adam = paddle.optimizer.Adadelta(
learning_rate=0.01,
parameters=[
{'params': linear_1.parameters()},
{
'params': linear_2.parameters(),
'weight_decay': 0.001,
},
],
weight_decay=0.1,
)
out = linear_1(a)
out = linear_2(out)
out.backward()
adam.step()
adam.clear_gradients()


support_types = get_xpu_op_support_types('adadelta')
for stype in support_types:
create_test_class(globals(), XPUTestAdadelta, stype)


if __name__ == "__main__":
unittest.main()
Loading