Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[2.0API]Add adaptive_avg_pool_2/3d #26369

Merged
merged 13 commits into from
Aug 21, 2020
274 changes: 274 additions & 0 deletions python/paddle/fluid/tests/unittests/test_adaptive_avg_pool2d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

import unittest
import numpy as np

import paddle.fluid.core as core
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


def adaptive_start_index(index, input_size, output_size):
return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
return int(np.ceil((index + 1) * input_size / output_size))


def adaptive_pool2d_forward(x, output_size, data_format='NCHW',
pool_type="avg"):

N = x.shape[0]
C, H, W = [x.shape[1], x.shape[2], x.shape[3]] if data_format == 'NCHW' \
else [x.shape[3], x.shape[1], x.shape[2]]

if (isinstance(output_size, int) or output_size == None):
H_out = output_size
W_out = output_size
output_size = [H_out, W_out]
else:
H_out, W_out = output_size

if output_size[0] == None:
output_size[0] = H
H_out = H
if output_size[1] == None:
output_size[1] = W
W_out = W

out = np.zeros((N, C, H_out, W_out)) if data_format=='NCHW' \
else np.zeros((N, H_out, W_out, C))

for i in range(H_out):
in_h_start = adaptive_start_index(i, H, output_size[0])
in_h_end = adaptive_end_index(i, H, output_size[0])

for j in range(W_out):
in_w_start = adaptive_start_index(j, W, output_size[1])
in_w_end = adaptive_end_index(j, W, output_size[1])

if data_format == 'NCHW':
x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end]
if pool_type == 'avg':
field_size = (
(in_h_end - in_h_start) * (in_w_end - in_w_start))
out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size
elif pool_type == 'max':
out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
elif data_format == 'NHWC':
x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :]
if pool_type == 'avg':
field_size = (
(in_h_end - in_h_start) * (in_w_end - in_w_start))
out[:, i, j, :] = np.sum(x_masked, axis=(1, 2)) / field_size
elif pool_type == 'max':
out[:, i, j, :] = np.max(x_masked, axis=(1, 2))
return out


class TestAdaptiveAvgPool2dAPI(unittest.TestCase):
def setUp(self):
self.x_np = np.random.random([2, 3, 7, 7]).astype("float32")
self.res_1_np = adaptive_pool2d_forward(
x=self.x_np, output_size=[3, 3], pool_type="avg")

self.res_2_np = adaptive_pool2d_forward(
x=self.x_np, output_size=5, pool_type="avg")

self.res_3_np = adaptive_pool2d_forward(
x=self.x_np, output_size=[2, 5], pool_type="avg")

self.res_4_np = adaptive_pool2d_forward(
x=self.x_np,
output_size=[3, 3],
pool_type="avg",
data_format="NHWC")

self.res_5_np = adaptive_pool2d_forward(
x=self.x_np, output_size=[None, 3], pool_type="avg")

def test_static_graph(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.enable_static()
x = paddle.data(name="x", shape=[2, 3, 7, 7], dtype="float32")

out_1 = paddle.nn.functional.adaptive_avg_pool2d(
x=x, output_size=[3, 3])

out_2 = paddle.nn.functional.adaptive_avg_pool2d(x=x, output_size=5)

out_3 = paddle.nn.functional.adaptive_avg_pool2d(
x=x, output_size=[2, 5])

out_4 = paddle.nn.functional.adaptive_avg_pool2d(
x=x, output_size=[3, 3], data_format="NHWC")

out_5 = paddle.nn.functional.adaptive_avg_pool2d(
x=x, output_size=[None, 3])

exe = paddle.static.Executor(place=place)
[res_1, res_2, res_3, res_4, res_5] = exe.run(
fluid.default_main_program(),
feed={"x": self.x_np},
fetch_list=[out_1, out_2, out_3, out_4, out_5])

assert np.allclose(res_1, self.res_1_np)

assert np.allclose(res_2, self.res_2_np)

assert np.allclose(res_3, self.res_3_np)

assert np.allclose(res_4, self.res_4_np)

assert np.allclose(res_5, self.res_5_np)

def test_dynamic_graph(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.disable_static(place=place)
x = paddle.to_variable(self.x_np)

out_1 = paddle.nn.functional.adaptive_avg_pool2d(
x=x, output_size=[3, 3])

out_2 = paddle.nn.functional.adaptive_avg_pool2d(x=x, output_size=5)

out_3 = paddle.nn.functional.adaptive_avg_pool2d(
x=x, output_size=[2, 5])

out_4 = paddle.nn.functional.adaptive_avg_pool2d(
x=x, output_size=[3, 3], data_format="NHWC")

out_5 = paddle.nn.functional.adaptive_avg_pool2d(
x=x, output_size=[None, 3])

assert np.allclose(out_1.numpy(), self.res_1_np)

assert np.allclose(out_2.numpy(), self.res_2_np)

assert np.allclose(out_3.numpy(), self.res_3_np)

assert np.allclose(out_4.numpy(), self.res_4_np)

assert np.allclose(out_5.numpy(), self.res_5_np)


class TestAdaptiveAvgPool2dClassAPI(unittest.TestCase):
def setUp(self):
self.x_np = np.random.random([2, 3, 7, 7]).astype("float32")
self.res_1_np = adaptive_pool2d_forward(
x=self.x_np, output_size=[3, 3], pool_type="avg")

self.res_2_np = adaptive_pool2d_forward(
x=self.x_np, output_size=5, pool_type="avg")

self.res_3_np = adaptive_pool2d_forward(
x=self.x_np, output_size=[2, 5], pool_type="avg")

self.res_4_np = adaptive_pool2d_forward(
x=self.x_np,
output_size=[3, 3],
pool_type="avg",
data_format="NHWC")

self.res_5_np = adaptive_pool2d_forward(
x=self.x_np, output_size=[None, 3], pool_type="avg")

def test_static_graph(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.enable_static()
x = paddle.data(name="x", shape=[2, 3, 7, 7], dtype="float32")

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=[3, 3])
out_1 = adaptive_avg_pool(x=x)

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=5)
out_2 = adaptive_avg_pool(x=x)

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=[2, 5])
out_3 = adaptive_avg_pool(x=x)

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(
output_size=[3, 3], data_format="NHWC")
out_4 = adaptive_avg_pool(x=x)

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(
output_size=[None, 3])
out_5 = adaptive_avg_pool(x=x)

exe = paddle.static.Executor(place=place)
[res_1, res_2, res_3, res_4, res_5] = exe.run(
fluid.default_main_program(),
feed={"x": self.x_np},
fetch_list=[out_1, out_2, out_3, out_4, out_5])

assert np.allclose(res_1, self.res_1_np)

assert np.allclose(res_2, self.res_2_np)

assert np.allclose(res_3, self.res_3_np)

assert np.allclose(res_4, self.res_4_np)

assert np.allclose(res_5, self.res_5_np)

def test_dynamic_graph(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.disable_static(place=place)
x = paddle.to_variable(self.x_np)

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=[3, 3])
out_1 = adaptive_avg_pool(x=x)

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=5)
out_2 = adaptive_avg_pool(x=x)

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=[2, 5])
out_3 = adaptive_avg_pool(x=x)

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(
output_size=[3, 3], data_format="NHWC")
out_4 = adaptive_avg_pool(x=x)

adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(
output_size=[None, 3])
out_5 = adaptive_avg_pool(x=x)

assert np.allclose(out_1.numpy(), self.res_1_np)

assert np.allclose(out_2.numpy(), self.res_2_np)

assert np.allclose(out_3.numpy(), self.res_3_np)

assert np.allclose(out_4.numpy(), self.res_4_np)

assert np.allclose(out_5.numpy(), self.res_5_np)


if __name__ == '__main__':
unittest.main()
Loading