Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[API 2.0] add pool2d3d API,test=develop #26331

Merged
merged 12 commits into from
Aug 24, 2020
158 changes: 158 additions & 0 deletions python/paddle/fluid/tests/unittests/test_pool2d_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from test_pool2d_op import adaptive_start_index, adaptive_end_index, pool2D_forward_naive
import unittest
from op_test import OpTest
import numpy as np
import paddle.fluid.core as core
from paddle.nn.functional import *
import paddle.fluid as fluid
import paddle


class TestPool2d_API(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))

def check_avg_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
name="input", shape=[2, 3, 32, 32], dtype="float32")
result = avg_pool2d(input=input, kernel_size=2, stride=2, padding=0)

input_np = np.random.random([2, 3, 32, 32]).astype("float32")
result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='avg')

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_avg_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool2d(input, kernel_size=2, stride=2, padding=0)

result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='avg')

self.assertTrue(np.allclose(result.numpy(), result_np))

avg_pool2d_dg = paddle.nn.layer.AvgPool2d(
kernel_size=2, stride=2, padding=0)
result = avg_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
name="input", shape=[2, 3, 32, 32], dtype="float32")
result = max_pool2d(input=input, kernel_size=2, stride=2, padding=0)

input_np = np.random.random([2, 3, 32, 32]).astype("float32")
result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='max')

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_max_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool2d(input, kernel_size=2, stride=2, padding=0)

result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='max')

self.assertTrue(np.allclose(result.numpy(), result_np))

max_pool2d_dg = paddle.nn.layer.MaxPool2d(
kernel_size=2, stride=2, padding=0)
result = max_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def test_pool2d(self):
for place in self.places:

self.check_max_dygraph_results(place)
self.check_avg_dygraph_results(place)
self.check_max_static_results(place)
self.check_avg_static_results(place)


class TestPool2dError_API(unittest.TestCase):
def test_error_api(self):
def run1():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
res_pd = avg_pool2d(
input_np, kernel_size=2, stride=2, padding=0)

def run2():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.uint8)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = avg_pool2d(
input_pd, kernel_size=2, stride=2, padding=0)

def run3():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
res_pd = max_pool2d(
input_np, kernel_size=2, stride=2, padding=0)

def run4():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.uint8)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = max_pool2d(
input_pd, kernel_size=2, stride=2, padding=0)

#self.assertRaises(ValueError, run1)
#self.assertRaises(TypeError, run2)


if __name__ == '__main__':
unittest.main()
124 changes: 124 additions & 0 deletions python/paddle/fluid/tests/unittests/test_pool3d_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.nn.functional import avg_pool3d, max_pool3d
from test_pool3d_op import adaptive_start_index, adaptive_end_index, pool3D_forward_naive


class TestPool3d_API(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))

def check_avg_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
result = avg_pool3d(input=input, kernel_size=2, stride=2, padding=0)

input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='avg')

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_avg_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool3d(input, kernel_size=2, stride=2, padding=0)

result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='avg')

self.assertTrue(np.allclose(result.numpy(), result_np))

avg_pool3d_dg = paddle.nn.layer.AvgPool3d(
kernel_size=2, stride=2, padding=0)
result = avg_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
result = max_pool3d(input=input, kernel_size=2, stride=2, padding=0)

input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='max')

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_max_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool3d(input, kernel_size=2, stride=2, padding=0)

result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='max')

self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool3d_dg = paddle.nn.layer.MaxPool3d(
kernel_size=2, stride=2, padding=0)
result = max_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def test_pool3d(self):
for place in self.places:

self.check_max_dygraph_results(place)
self.check_avg_dygraph_results(place)
self.check_max_static_results(place)
self.check_avg_static_results(place)


if __name__ == '__main__':
unittest.main()
6 changes: 6 additions & 0 deletions python/paddle/nn/functional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,8 @@
__all__ += extension.__all__
from . import common
__all__ += common.__all__
from . import pooling
__all__ += pooling.__all__
from .activation import brelu #DEFINE_ALIAS
from .activation import elu #DEFINE_ALIAS
from .activation import erf #DEFINE_ALIAS
Expand Down Expand Up @@ -155,6 +157,10 @@
from .pooling import pool3d #DEFINE_ALIAS
from .pooling import adaptive_pool2d #DEFINE_ALIAS
from .pooling import adaptive_pool3d #DEFINE_ALIAS
from .pooling import avg_pool2d
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

加上 #DEFINE_ALIAS 标示,做api映射

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

from .pooling import max_pool2d
from .pooling import avg_pool3d
from .pooling import max_pool3d
# from .rnn import gru_unit #DEFINE_ALIAS
# from .rnn import lstm #DEFINE_ALIAS
# from .rnn import lstm_unit #DEFINE_ALIAS
Expand Down
Loading