Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[API 2.0] add pool2d3d API,test=develop #26331

Merged
merged 12 commits into from
Aug 24, 2020
373 changes: 373 additions & 0 deletions python/paddle/fluid/tests/unittests/test_pool1d_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,373 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid


def adaptive_start_index(index, input_size, output_size):
return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
return int(np.ceil((index + 1) * input_size / output_size))


def max_pool1D_forward_naive(x,
ksize,
strides,
paddings,
global_pool=0,
ceil_mode=False,
exclusive=False,
adaptive=False,
data_type=np.float64):
N, C, L = x.shape
if global_pool == 1:
ksize = [L]
if adaptive:
L_out = ksize[0]
else:
L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1
) // strides[0] + 1 if ceil_mode else (
L - ksize[0] + 2 * paddings[0]) // strides[0] + 1

out = np.zeros((N, C, L_out))
for i in range(L_out):
if adaptive:
r_start = adaptive_start_index(i, L, ksize[0])
r_end = adaptive_end_index(i, L, ksize[0])
else:
r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
x_masked = x[:, :, r_start:r_end]

out[:, :, i] = np.max(x_masked, axis=(2))
return out


def avg_pool1D_forward_naive(x,
ksize,
strides,
paddings,
global_pool=0,
ceil_mode=False,
exclusive=False,
adaptive=False,
data_type=np.float64):
N, C, L = x.shape
if global_pool == 1:
ksize = [L]
if adaptive:
L_out = ksize[0]
else:
L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1
) // strides[0] + 1 if ceil_mode else (
L - ksize[0] + 2 * paddings[0]) // strides[0] + 1

out = np.zeros((N, C, L_out))
for i in range(L_out):
if adaptive:
r_start = adaptive_start_index(i, L, ksize[0])
r_end = adaptive_end_index(i, L, ksize[0])
else:
r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
x_masked = x[:, :, r_start:r_end]

field_size = (r_end - r_start) \
if (exclusive or adaptive) else (ksize[0])
if data_type == np.int8 or data_type == np.uint8:
out[:, :, i] = (np.rint(
np.sum(x_masked, axis=(2, 3)) / field_size)).astype(data_type)
else:
out[:, :, i] = (np.sum(x_masked, axis=(2)) /
field_size).astype(data_type)
return out


class TestPool1d_API(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))

def check_avg_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=0)

input_np = np.random.random([2, 3, 32]).astype("float32")
result_np = avg_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0], ceil_mode=False)

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_avg_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=[0])

result_np = avg_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

self.assertTrue(np.allclose(result.numpy(), result_np))

avg_pool1d_dg = paddle.nn.layer.AvgPool1d(
kernel_size=2, stride=None, padding=0)
result = avg_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
result = F.max_pool1d(input, kernel_size=2, stride=2, padding=[0])

input_np = np.random.random([2, 3, 32]).astype("float32")
result_np = max_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_max_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.max_pool1d(input, kernel_size=2, stride=2, padding=0)

result_np = max_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

self.assertTrue(np.allclose(result.numpy(), result_np))

max_pool1d_dg = paddle.nn.layer.MaxPool1d(
kernel_size=2, stride=None, padding=0)
result = max_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_adaptive_max_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.adaptive_max_pool1d(input, output_size=16)

result_np = max_pool1D_forward_naive(
input_np, ksize=[16], strides=[0], paddings=[0], adaptive=True)
self.assertTrue(np.allclose(result.numpy(), result_np))

ada_max_pool1d_dg = paddle.nn.layer.AdaptiveMaxPool1d(
output_size=16)
result = ada_max_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_adaptive_avg_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.adaptive_avg_pool1d(input, output_size=16)
result_np = avg_pool1D_forward_naive(
input_np, ksize=[16], strides=[0], paddings=[0], adaptive=True)

self.assertTrue(np.allclose(result.numpy(), result_np))

ada_max_pool1d_dg = paddle.nn.layer.AdaptiveAvgPool1d(
output_size=16)
result = ada_max_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_adaptive_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
result = F.adaptive_max_pool1d(input, output_size=16)

input_np = np.random.random([2, 3, 32]).astype("float32")
result_np = max_pool1D_forward_naive(
input_np, ksize=[16], strides=[2], paddings=[0], adaptive=True)

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_adaptive_avg_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
result = F.adaptive_avg_pool1d(input, output_size=16)

input_np = np.random.random([2, 3, 32]).astype("float32")
result_np = avg_pool1D_forward_naive(
input_np, ksize=[16], strides=[2], paddings=[0], adaptive=True)

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_max_dygraph_padding_same(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.max_pool1d(
input, kernel_size=2, stride=2, padding="SAME")

result_np = max_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

self.assertTrue(np.allclose(result.numpy(), result_np))

def check_avg_dygraph_padding_same(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.avg_pool1d(
input, kernel_size=2, stride=2, padding="SAME")

result_np = avg_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

self.assertTrue(np.allclose(result.numpy(), result_np))

def test_pool1d(self):
for place in self.places:

self.check_max_dygraph_results(place)
self.check_avg_dygraph_results(place)
self.check_max_static_results(place)
self.check_avg_static_results(place)
self.check_adaptive_max_dygraph_results(place)
self.check_adaptive_avg_dygraph_results(place)
self.check_adaptive_max_static_results(place)
self.check_adaptive_avg_static_results(place)
self.check_max_dygraph_padding_same(place)
self.check_avg_dygraph_padding_same(place)


class TestPool2dError_API(unittest.TestCase):
def test_error_api(self):
def run1():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = [[2]]
res_pd = F.max_pool1d(
input_pd, kernel_size=2, stride=2, padding=padding)

self.assertRaises(ValueError, run1)

def run2():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = [[2]]
res_pd = F.max_pool1d(
input_pd, kernel_size=2, stride=2, padding=padding)

self.assertRaises(ValueError, run2)

def run3():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "padding"
res_pd = F.max_pool1d(
input_pd, kernel_size=2, stride=2, padding=padding)

self.assertRaises(ValueError, run3)

def run4():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = F.max_pool1d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True)

self.assertRaises(ValueError, run4)

def run5():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = F.max_pool1d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True)

self.assertRaises(ValueError, run5)

def run6():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = F.avg_pool1d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True)

self.assertRaises(ValueError, run6)

def run7():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "paddle"
res_pd = F.avg_pool1d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True)

self.assertRaises(ValueError, run7)


if __name__ == '__main__':
unittest.main()
Loading