Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
pwvanrijn authored Sep 25, 2019
1 parent d3c846e commit b941ea5
Show file tree
Hide file tree
Showing 80 changed files with 8,352 additions and 0 deletions.
507 changes: 507 additions & 0 deletions Source/margindistwtsum.f95

Large diffs are not rendered by default.

399 changes: 399 additions & 0 deletions Source/marginpred.f95
Original file line number Diff line number Diff line change
@@ -0,0 +1,399 @@
! Obtain interactions of category indicators and predictors.
! catobsrange maps underlying to observed categories.
! dat provides responses.
! npsu is the number of psus's per stratum.
! nstratum is the number of strata.
! numcat provides the underlying number of categories per item.
! numcatobs provides the observed number of categories per item.
! psu indicates the psu of an observation.
! stratum indicates the stratum of an observation.
! weight provides weighted sum.
! complx indicates complex sampling.
! resid is for residuals.
! stratify is .true. for stratified sampling.
! usepsu is .true. for primary sampling units within strata.
! beta provides parameter estimates.

! eacovgaminv_louis is the inverse of the Louis information plus the
! constraint component of the negative hessian.
! extvar provides external variables.
! gradsdes provides gradients for observations.
! indvar provides predictor variables.
! lintran transforms the latent vector.
! obsweight provides weights.
! postdensity is the array of posterior densities.
! theta is the array of quadrature points.
! tolres is the residual tolerance.
! fitppred is the average of fitted product of item indicator and predictors.
! fitpred is the total of fitted products of item indicator and predictors.
! obsppred is the observed average product of item indicator and predictors.
! obspred is the observed total product of item indicator and predictors.
! presented counts weighted items presented.
! residapred is the adjusted residual of average of products.
! residppred is the residual of average of products.
! residpred is the residual of total of products.
! stdobsppred is the asymptotic standard deviation of the observed average of products.
! stdobspred is the asymptotic standard deviation of the observed total of products.
! stdresidppred is the asymptotic standard deviation of residual average of products.
! stdresidpred is the asymptotic standard deviation of the residual total of products.



subroutine marginpred(catobsrange,dat,npsu,nstratum,numcat,numcatobs,&
psu,stratum,complx,resid,stratify,usepsu,&
beta,eacovgaminv_louis,extvar,indvar,gradsdes,lintran,&
obsweight,postdensity,theta,tolres,&
fitppred,fitpred,obsppred,obspred,presented,&
residapred,residppred,residpred,stdobsppred,stdobspred,stdresidppred,stdresidpred)


implicit none
interface


! Estimate the cross information matrix.
! adjust indicates adjustment for means.
! grads is the array of observation gradients.
! grads1 is another array of observation gradients.
! obsweight contains observation weights.

function crossinformation(adjust,grads,grads1,obsweight)
implicit none
logical,intent(in)::adjust
real(kind=8),intent(in)::grads(:,:),grads1(:,:),obsweight(:)
real(kind=8)::crossinformation(size(grads,1),size(grads1,1))
end function crossinformation



! The following description is for the function's basic purpose.
! Its use in this subroutine is a bit different.
! Estimate the information matrix for a complex sample.
! This version is designed for random sampling of psu's within strata.
! Sampling is with replacement.
! npsu is the number of psus's per stratum.
! nstratum is the number of strata.
! psu indicates the psu of an observation.
! stratum indicates the stratum of an observation.
! stratify is .true. for stratified sampling.
! usepsu is .true. for primary sampling units within strata.
! grads is the array of observation gradients.
! obsweight contains observation weights.

function information_complex(npsu,nstratum,psu,stratum,stratify,usepsu,grads,obsweight)
implicit none
integer,intent(in)::nstratum
integer,intent(in),optional::npsu(:),psu(:),stratum(:)
logical,intent(in)::stratify,usepsu
real(kind=8),intent(in)::grads(:,:),obsweight(:)
real(kind=8)::information_complex(size(grads,1),size(grads,1))
end function information_complex

! probvec is used to compute underlying item probabilities.
! numcat indicates the number of underlying categories per item.
! mask indicates which items were presented.
! locations provides location parameters and scales provides scale factors.
! theta is the value of the latent vector.
function probvec(numcat,mask,locations,scales,theta)
implicit none
integer,intent(in)::numcat(:)
logical,intent(in)::mask(:)
real(kind=8),intent(in)::locations(:),scales(:,:),theta(:)
real(kind=8)::probvec(size(locations))
end function probvec
! probvecobsall is used to compute observed item probabilities given the latent vector.
! catobsrange is the table of ranges of underlying categories per observed category.
! numcat provides the number of underlying categories per item, and numcatobs provides the number
! of observed categories per item.
! mask indicates which items were presented.
! probcat is the vector of underlying item probabilities.
function probvecobsall(catobsrange,numcatobs,mask,probcat)
implicit none
integer,intent(in)::catobsrange(:,:),numcatobs(:)
logical,intent(in)::mask(:)
real(kind=8),intent(in)::probcat(:)
real(kind=8)::probvecobsall(sum(numcatobs))
end function probvecobsall



end interface
integer,intent(in)::catobsrange(:,:),dat(:,:),&
npsu(:),nstratum,numcat(:),numcatobs(:),&
psu(:),stratum(:)
logical,intent(in)::complx,resid,stratify,usepsu
real(kind=8),intent(in)::beta(:),eacovgaminv_louis(:,:),&
gradsdes(:,:),extvar(:,:),indvar(:,:),lintran(:,:),obsweight(:),&
postdensity(:,:),theta(:,:,:),tolres
real(kind=8),intent(out)::fitppred(:,:),fitpred(:,:),&
obsppred(:,:),obspred(:,:),presented(:),residapred(:,:),residppred(:,:),residpred(:,:),&
stdobsppred(:,:),stdobspred(:,:),stdresidppred(:,:),stdresidpred(:,:)


! al is an allocation indicator.
! counter finds observedlying item codes.
! counter1 also finds observed item codes.
! dimdesign is the design dimension.
! dimlatout is the number of skills.
! item is an item.
! ncat is number of underlying categories.
! ncatobs is number of observed categories.
! nitems is the number of items.
! nlin is the position in beta of linear terms.
! nobs is the number of observations.
! nprede is the number of external predictors.
! npredi is the number of internal predictors.
! npred is the number of predictors.
! nquad is the number of quadrature points.
! nscale is the position in beta of slopes.
! obs counts observations.
! pred is a predictor number.
! quad counts quadrature points.
! resp is a response vector.

integer::al,counter,counter1,dimdesign,dimlatout,item,ncat,ncatobs,nitems,nlin,nobs,&
npred,nprede,npredi,nquad,nscale,&
obs,pred,quad,resp(size(dat,1))
! datamask is a mask for items presented.

logical::datamask(size(dat,1))

! avediff is an average difference.
! covobs is the covariance matrix for adjusted observed values.
! covsum is used to estimate asymptotic variances for fitted marginals.
! diff is a difference.
! fr is a fraction.
! locations gives location parameters.

! newtheta is the transformed latent vector.
! obsmat is the array of response indicators and fits.
! The first row is the observed indicator, the second is the fit,
! the third is 1 if presented and 0 otherwise.
! probcat is the vector of underlying conditional probabilities.
! probcatobs is the vector of observed conditional probabilities.
! probm is the array of observed marginal probabilities.
! probs is the array of observed conditional probabilities.
! respprobvec is the vector of fitted probabilites for an observation.
! respresid is the residual component for an observation.
! respvec is the corresponding vector of observations.
! scales gives scale parameters.
! score is a predictor value.

! slopes is for regression of errors on gradients.
! totalweight is the sum of all observation weights.
! x is a real number.

real(kind=8)::avediff,covobs(1,1),covsum(size(gradsdes,1)),diff,escore(size(numcatobs),size(theta,2)),&
fitscore(size(numcatobs)),fitscoret,fr,locations(sum(numcat)),newtheta(size(lintran,1)),&
probcat(sum(numcat)),&
probm(sum(numcatobs)),probs(sum(numcatobs)),&
respprobvec(sum(numcatobs)),respvec(sum(numcatobs)),&
scales(size(lintran,1),sum(numcat)),score,&
slopes(size(gradsdes,1)),totalweight,x

real(kind=8),allocatable::obsmat(:,:,:)
! Set up parameter arrays for simplified processing.
dimdesign=size(gradsdes,1)

dimlatout=size(lintran,1)

ncat=sum(numcat)
ncatobs=sum(numcatobs)
nitems=size(dat,1)
nlin=ncat*(dimlatout+1)+1
nobs=size(obsweight)
npredi=size(indvar,1)
nprede=size(extvar,1)
npred=nprede+npredi
nquad=size(theta,2)
nscale=ncat+1

fitppred=0.0_8
fitpred=0.0_8
locations=beta(1:ncat)
allocate(obsmat(3,nobs,ncatobs),stat=al)
if(al/=0)stop 'Allocation failed for interactions of items and predictors.'
obsmat=0.0_8

obsppred=0.0_8
obspred=0.0_8

stdobsppred=0.0_8
stdobspred=0.0_8
totalweight=sum(obsweight)
if(resid)then
residapred=0.0_8
residppred=0.0_8
residpred=0.0_8
stdresidppred=0.0_8
stdresidpred=0.0_8
end if
scales=reshape(beta(nscale:nlin-1),(/dimlatout,ncat/))
presented=0.0_8
! Totals of products.
do pred=2,npred

do obs=1,nobs
if(obsweight(obs)<=0.0_8) cycle
! Observation obs.
resp=dat(:,obs)
datamask=.false.
do item=1,nitems

! Skip item if missing.
if(resp(item)>=0.and.resp(item)<numcatobs(item))then
datamask(item)=.true.
if(pred==2) presented(item)=presented(item)+obsweight(obs)
end if
end do


if(pred<=npredi)then
score=indvar(pred,obs)
else
score=extvar(pred-npredi,obs)
end if

! Cycle through quadrature points.
probm=0.0_8
do quad=1,nquad
! Probability computation.
newtheta=matmul(lintran,theta(:,quad,obs))
probcat=probvec(numcat,datamask,locations,scales,newtheta)
probs=probvecobsall(catobsrange,numcatobs,datamask,probcat)
probm=probm+postdensity(quad,obs)*probs
end do

! Go through all items.
counter=1
respvec=0.0_8
respprobvec=0.0_8
do item=1,nitems

! Skip item if missing.
if(datamask(item))then


obsmat(3,obs,counter:counter+numcatobs(item)-1)=1.0_8
respvec(counter+resp(item))=score
obspred(counter+resp(item),pred)=obspred(counter+resp(item),pred)+obsweight(obs)*score
do counter1=counter,counter+numcatobs(item)-1
respprobvec(counter1)=probm(counter1)*score
fitpred(counter1,pred)=fitpred(counter1,pred)+respprobvec(counter1)*obsweight(obs)
end do
end if
counter=counter+numcatobs(item)
end do

obsmat(1,obs,:)=respvec
if(resid)obsmat(2,obs,:)=respvec-respprobvec

end do

if(resid) residpred(:,pred)=obspred(:,pred)-fitpred(:,pred)
!
! Fractions and variances.
counter=1

do item=1,nitems

fr=presented(item)/totalweight
if(presented(item)>0.0_8) then
do counter1=counter,counter+numcatobs(item)-1
fitppred(counter1,pred)= fitpred(counter1,pred)/presented(item)
obsppred(counter1,pred)= obspred(counter1,pred)/presented(item)
if(resid)residppred(counter1,pred)= residpred(counter1,pred)/presented(item)





! Standard deviation of total of products depends on sampling.
if(.not.complx)then
x=obspred(counter1,pred)/totalweight
do obs=1,nobs
diff=obsmat(1,obs,counter1)-x
stdobspred(counter1,pred)=stdobspred(counter1,pred)+obsweight(obs)*diff*diff
diff=diff-obsppred(counter1,pred)*(obsmat(3,obs,counter1)-fr)
stdobsppred(counter1,pred)=stdobsppred(counter1,pred)+obsweight(obs)*diff*diff

end do
stdobspred(counter1,pred)=sqrt(stdobspred(counter1,pred))
stdobsppred(counter1,pred)=sqrt(stdobspred(counter1,pred))/presented(item)
if(resid)then


covsum=reshape(crossinformation(.true.,obsmat(2:2,:,counter1),gradsdes,obsweight),&
(/dimdesign/))

slopes=matmul(eacovgaminv_louis,covsum)
avediff=0.0_8
do obs=1,nobs
if(obsweight(obs)<=0.0_8)cycle
obsmat(2,obs,counter1)=obsmat(2,obs,counter1)-dot_product(gradsdes(:,obs),slopes)
avediff=avediff+obsmat(2,obs,counter1)*obsweight(obs)
end do
avediff=avediff/totalweight
do obs=1,nobs
diff=obsmat(2,obs,counter1)-avediff
stdresidpred(counter1,pred)=stdresidpred(counter1,pred)+diff*diff*obsweight(obs)
end do



end if



else
covobs=information_complex(npsu,nstratum,psu,stratum,stratify,usepsu,&
obsmat(1:1,:,counter1),obsweight)
stdobspred(counter1,pred)=sqrt(covobs(1,1))

obsmat(1,:,counter1)=obsmat(1,:,counter1)-obsppred(counter1,pred)*obsmat(3,:,counter1)
covobs=information_complex(npsu,nstratum,psu,stratum,stratify,usepsu,&
obsmat(1:1,:,counter1),obsweight)
stdobsppred(counter1,pred)=sqrt(covobs(1,1)/presented(item))
if(resid)then
covsum=reshape(crossinformation(.true.,obsmat(2:2,:,counter1),gradsdes,obsweight),&
(/dimdesign/))

slopes=matmul(eacovgaminv_louis,covsum)



do obs=1,nobs
obsmat(2,obs,counter1)=obsmat(2,obs,counter1)-dot_product(gradsdes(:,obs),slopes)
end do
covobs=information_complex(npsu,nstratum,psu,stratum,stratify,usepsu,&
obsmat(2:2,:,counter1),obsweight)

stdresidpred(counter1,pred)=covobs(1,1)
end if

end if
if(resid)then

stdresidpred(counter1,pred)=sqrt(max(0.0_8,stdresidpred(counter1,pred)))
stdresidppred(counter1,pred)=stdresidpred(counter1,pred)/presented(item)
if(stdresidpred(counter1,pred)>tolres*stdobspred(counter1,pred).and.stdobspred(counter1,pred)>0.0_8)&
residapred(counter1,pred)=residpred(counter1,pred)/stdresidpred(counter1,pred)
end if



end do
end if




counter=counter+numcatobs(item)

end do

end do

return
deallocate(obsmat)
end subroutine marginpred
Loading

0 comments on commit b941ea5

Please sign in to comment.