Skip to content

zphang/adaptive-computation-time-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive Computation Time

This is an implementation of Adaptive Computation Time (Graves, 2016) in PyTorch.

Introduction

Adaptive Computation Time is a drop-in replacement for RNNs structures that allows the model to process multiple time steps on a single input token. More information can be found in the paper, or in this blog post.

Requirements

  • Python 3.6
  • PyTorch 0.3.0
  • matplotlib, argparse

Experiments

I am still in the process of replicating the experiments described in the paper.

  • Bit Parity
  • Logical Gates
  • Addition
  • Sorting
  • Word Prediction

Usage

  1. Git clone this repository

  2. Train/Evaluate the model on a given task/parameter setting:

    • E.g.
    python run_train.py \
      --task=parity \
      --use_act=False \
      --model_save_path="outputs/models/parity/rnn"
    python run_train.py \
      --task=parity \
      --use_act=True \
      --act_ponder_penalty=0.001 \
      --model_save_path="outputs/models/parity/act_0.001"

About

Alex Graves' Adaptive Computation Time in PyTorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages