conda create -n mcts python=3.10 -y
conda activate mcts
pip install -e .
SC_MCTS/
├── LLMs-Planning/
├── blocksworld/
│ ├── data/
│ │ ├── split_v1/ # Hard mode blocksworld dataset
│ │ └── split_v2/ # Easy mode blocksworld dataset
│ └── prompts/
├── reasoners/
│ ├── base.py # Experiment dataset control flow.
│ ├── blocksworld.py # Blocksworld result validator, ICL prompt construction, etc.
│ ├── bw_utils.py # Blocksworld action and plan extractor, etc.
│ ├── exllamav2_model.py # ExllamaV2 inference framework.
│ ├── mcts.py # Main program for MCTS.
│ ├── search_config.py # MCTS search configuration.
│ └── world_model.py # Blocksworld step validator, state updates, etc.
├── scripts/
│ └── mcts_inference.py # MCTS blocksworld experiment framework.
│ └── mcts.sh # MCTS blocksworld experiment script.
│ └── cot_inference.py # CoT blocksworld experiment framework.
│ └── cot.sh # CoT blocksworld experiment script.
├── README.md
├── setup.py
└── requirements.txt
In our code we referenced some implementation from llm-reasoners. We are very grateful for their outstanding contributions!
@misc{gao2024interpretablecontrastivemontecarlo,
title={Interpretable Contrastive Monte Carlo Tree Search Reasoning},
author={Zitian Gao and Boye Niu and Xuzheng He and Haotian Xu and Hongzhang Liu and Aiwei Liu and Xuming Hu and Lijie Wen},
year={2024},
eprint={2410.01707},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.01707},
}